Final
- 25
- 0
Hi...
A group G is proken to a subgroup H. Let t_{\alpha} the generator of G and
t_i the generator of H. The t_i form a subalgebra. Take the x_a to be the other indipendent generator of G.
Why any finite element of G may be expressed in the form g=exp[i\xi_ax_a]exp[i\theta_i t_i] even if [t_i,x_a]\neq0?
A group G is proken to a subgroup H. Let t_{\alpha} the generator of G and
t_i the generator of H. The t_i form a subalgebra. Take the x_a to be the other indipendent generator of G.
Why any finite element of G may be expressed in the form g=exp[i\xi_ax_a]exp[i\theta_i t_i] even if [t_i,x_a]\neq0?