A Brownian Motion (Langevin equation) correlation function

Click For Summary
The Langevin equation of Brownian motion is a stochastic differential equation that describes the motion of particles in a fluid, incorporating both friction and random forces. The correlation function of the noise term is derived from the fluctuation-dissipation theorem, linking the random force's strength to the temperature of the system. To calculate the correlation function, one can derive the Fokker-Planck equation or evaluate the expectation value of kinetic energy using the equipartition theorem. The solution involves the Green's function, leading to expressions for the velocity and its fluctuations over time. Ultimately, the diffusion coefficient is confirmed as D = λk_B T, validating the connection between dissipation and fluctuation in the system.
Tim667
Messages
12
Reaction score
0
TL;DR
How does one calculate the correlation function?
So the Langevin equation of Brownian motion is a stochastic differential equation defined as
$$m {d \textbf{v} \over{dt} } = - \lambda \textbf{v} + \eta(t)$$

where the noise function eta has correlation function $$\langle \eta_i(t) \eta_j(t') \rangle=2 \lambda k_B T \delta_{ij} \delta(t - t')$$.

I have two questions. How does one actually calculate a correlation function and where exactly do the constants (with temperature, the Boltzmann constants etc) proceeding the delta functions originate here? I understand that the delta functions ensure that there is no correlation at different times etc, but I don't get where the rest comes from.

Thanks
 
Physics news on Phys.org
That's the fluctuation-dissipation theorem. It's one of Einstein's most famous results from his "miracle year" 1905. There are two ways to answer your question. One is to derive the Fokker-Planck equation for the probability distribution function ##f(t,\vec{v})## and show that the stationary solution is the Maxwell-Boltzmann distribution with temperature ##T##, as it should be.

The other is to evaluate the expectation value of the kinetic energy and use the equipartition theorem for the long-time limit. In other words we have to calculate ##\langle \vec{v}^2(t)##. To do that we can formally solve the stochastic differential equation, using the Green's function of the "deterministic part", i.e., we look for
$$m \dot{G}(t)+\lambda G(t)=\delta(t). \qquad (*)$$
For ##t \neq 0## we have
$$G(t)=A \exp(-\gamma t), \quad \gamma=\lambda/m.$$
Since we want a "causal Green's function" we make ##G(t)=0## for ##t<0## and determine ##A## for ##t>0## such that we get the right singularity. So we integrate (*) over a small interval ##(-\epsilon,\epsilon)## and make ##\epsilon \rightarrow 0^+## to get
$$m A=1 \; \Rightarrow \; A=1/m.$$
So we have
$$G(t)=\Theta(t) \frac{1}{m} \exp(-\gamma t).$$
Then the formal solution of the Langevin equation is (for ##t>0##)
$$\vec{v}(t)=\vec{v}_0 \exp(-\gamma t) + \int_0^t \mathrm{d} t' G(t-t') \eta(t')=\vec{v}_0 \exp(-\gamma t) + \vec{v}_{\text{fluct}}(t).$$
From this we get
$$\vec{v}^2(t) = \vec{v}_0^2 \exp(-2 \gamma t) + 2 \vec{v}_0 \cdot \vec{v}_{\text{fluct}}(t) \exp(-\gamma t) + \vec{v}_{\text{fluct}}^2(t).$$
Taking the expectation value, we get because of ##\langle \vec{\eta}(t)=0##
$$\langle \vec{v}^2(t) \rangle=\vec{v}_0^2 \exp(-2 \gamma t) +\langle \vec{v}_{\text{fluct}}^2(t) \rangle.$$
Now
$$\langle \vec{v}_{\text{fluct}}^2(t) \rangle=\int_0^t \mathrm{d} t_1 \int_0^t \mathrm{d} t_2 G(t-t_1) G(t-t_2) \langle{\eta_j(t_1) \eta_j(t_2)}=\int_0^t \mathrm{d} t_1 \int_0^t \mathrm{d} t_2 6 \lambda k_{\text{B}} T \delta(t_1-t_2)G(t-t_1) G(t-t_2).$$
Evaluating the integral leads finally to
$$\langle \vec{v}_{\text{fluct}}^2(t) \rangle=\frac{3 k_{\text{B}} T}{m}[1-\exp(-2 \gamma t)].$$
For ##t \rightarrow \infty## we thus get
$$\frac{m}{2} \langle \vec{v}^2(t) \rangle \rightarrow \frac{3}{2} k_{\text{B}} T,$$
as it should be in the equilibrium limit according to the equipartition theorem. So the diffusion coefficient ##D=\lambda k_{\text{B}} T## as assumed is the correct choice. That's known as dissipation-fluctuation theorem, because it connects the friction coefficient ##\lambda## ("dissipation") to the strength of the random force in the Langevin equation, which is describing (from a macroscopic point of view) the "diffusion" of the heavy particle in the heat bath made up by the light particles.
 
  • Like
Likes anuttarasammyak and Tim667
vanhees71 said:
That's the fluctuation-dissipation theorem. It's one of Einstein's most famous results from his "miracle year" 1905. There are two ways to answer your question. One is to derive the Fokker-Planck equation for the probability distribution function ##f(t,\vec{v})## and show that the stationary solution is the Maxwell-Boltzmann distribution with temperature ##T##, as it should be.

The other is to evaluate the expectation value of the kinetic energy and use the equipartition theorem for the long-time limit. In other words we have to calculate ##\langle \vec{v}^2(t)##. To do that we can formally solve the stochastic differential equation, using the Green's function of the "deterministic part", i.e., we look for
$$m \dot{G}(t)+\lambda G(t)=\delta(t). \qquad (*)$$
For ##t \neq 0## we have
$$G(t)=A \exp(-\gamma t), \quad \gamma=\lambda/m.$$
Since we want a "causal Green's function" we make ##G(t)=0## for ##t<0## and determine ##A## for ##t>0## such that we get the right singularity. So we integrate (*) over a small interval ##(-\epsilon,\epsilon)## and make ##\epsilon \rightarrow 0^+## to get
$$m A=1 \; \Rightarrow \; A=1/m.$$
So we have
$$G(t)=\Theta(t) \frac{1}{m} \exp(-\gamma t).$$
Then the formal solution of the Langevin equation is (for ##t>0##)
$$\vec{v}(t)=\vec{v}_0 \exp(-\gamma t) + \int_0^t \mathrm{d} t' G(t-t') \eta(t')=\vec{v}_0 \exp(-\gamma t) + \vec{v}_{\text{fluct}}(t).$$
From this we get
$$\vec{v}^2(t) = \vec{v}_0^2 \exp(-2 \gamma t) + 2 \vec{v}_0 \cdot \vec{v}_{\text{fluct}}(t) \exp(-\gamma t) + \vec{v}_{\text{fluct}}^2(t).$$
Taking the expectation value, we get because of ##\langle \vec{\eta}(t)=0##
$$\langle \vec{v}^2(t) \rangle=\vec{v}_0^2 \exp(-2 \gamma t) +\langle \vec{v}_{\text{fluct}}^2(t) \rangle.$$
Now
$$\langle \vec{v}_{\text{fluct}}^2(t) \rangle=\int_0^t \mathrm{d} t_1 \int_0^t \mathrm{d} t_2 G(t-t_1) G(t-t_2) \langle{\eta_j(t_1) \eta_j(t_2)}=\int_0^t \mathrm{d} t_1 \int_0^t \mathrm{d} t_2 6 \lambda k_{\text{B}} T \delta(t_1-t_2)G(t-t_1) G(t-t_2).$$
Evaluating the integral leads finally to
$$\langle \vec{v}_{\text{fluct}}^2(t) \rangle=\frac{3 k_{\text{B}} T}{m}[1-\exp(-2 \gamma t)].$$
For ##t \rightarrow \infty## we thus get
$$\frac{m}{2} \langle \vec{v}^2(t) \rangle \rightarrow \frac{3}{2} k_{\text{B}} T,$$
as it should be in the equilibrium limit according to the equipartition theorem. So the diffusion coefficient ##D=\lambda k_{\text{B}} T## as assumed is the correct choice. That's known as dissipation-fluctuation theorem, because it connects the friction coefficient ##\lambda## ("dissipation") to the strength of the random force in the Langevin equation, which is describing (from a macroscopic point of view) the "diffusion" of the heavy particle in the heat bath made up by the light particles.
Thank you! Brilliant answer
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. I am in no way trolling. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. Yes, I'm questioning the most elementary physics question we're given in this world. The classic elevator in motion question: A person is standing on a scale in an elevator that is in constant motion...