MHB C.'s question at Yahoo Answers (orthogonality).

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Orthogonality
Click For Summary
Vectors X and Y in R^n are orthogonal if and only if the equality ||X+Y|| = ||X-Y|| holds true. The proof involves using the definition of the norm, where the squared norms of the sums and differences of the vectors are expressed in terms of their dot products. If X and Y are orthogonal, their dot product is zero, leading to the equality of the squared norms. Conversely, if the norms are equal, it results in the dot product being zero, confirming the orthogonality of the vectors. This establishes the necessary and sufficient condition for orthogonality in linear algebra.
Mathematics news on Phys.org
Hello C.

Using the definition of norm:

$ \left\|x+y\right\|^2=(x+y)\cdot (x+y)=x\cdot x+x\cdot y+y\cdot x+y\cdot y= \left\|x\right\|^2+ \left\|y\right\|^2+2\;x\cdot y\\
\left\|x-y\right\|^2=(x-y)\cdot (x-y)=x\cdot x-x\cdot y-y\cdot x+y\cdot y= \left\|x\right\|^2+ \left\|y\right\|^2-2\;x\cdot y\\
$
If $x$ and $y$ are orthogonal, then $x\cdot y=0$ as a consequence $\left\|x+y\right\|^2=\left\|x-y\right\|^2$ or equivalently $\left\|x+y\right\|=\left\|x-y\right\|$.

On the other hand if $\left\|x+y\right\|=\left\|x-y\right\|$, then $\left\|x+y\right\|^2=\left\|x-y\right\|^2$ which implies $4\;x\cdot y=0$ or equivalently $x\cdot y=0$ that is, $x$ and $y$ are orthogonal.
 
Good morning I have been refreshing my memory about Leibniz differentiation of integrals and found some useful videos from digital-university.org on YouTube. Although the audio quality is poor and the speaker proceeds a bit slowly, the explanations and processes are clear. However, it seems that one video in the Leibniz rule series is missing. While the videos are still present on YouTube, the referring website no longer exists but is preserved on the internet archive...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K