Calc 2 Sum of Alternating Geometric Series

bigbob123
Messages
2
Reaction score
0
Homework Statement
Suppose that An (from n = 0 to inf.) = {1/1, 3/1, 3/4, 9/4, 9/16, 27/16, 27/64, 81/64...} where we start with 1 and then alternate between multiplying by 3 and 1/4. Find the sum of An from n = 0 to n = inf.
Relevant Equations
Sn = A0(1-r)/(1-r) iff |r| < 1
A0 = 1
A1 = 3

3(An-1) / 4(An-2) = An
 
Physics news on Phys.org
You can show that (A_n)_{n \geq 0} satisfies a second order linear recurrence of the form <br /> A_{n+2} + pA_{n+1} + qA_n = 0, which has general solution <br /> A_n = C\lambda_1^n + D \lambda_2^n where C and D are constants determined by the values of a_0 and a_1 and \lambda_1 and \lambda_2 are the roots of <br /> \lambda^2 + p\lambda + q = 0.<br />

You then have an expression for A_n in closed form and can proceed to determine whether or not \sum_{n=0}^\infty A_n converges.
 
If you look closely you'll notice that your series consists of two interlaced ordinary geometric series.
 
  • Like
Likes WWGD
pasmith said:
You can show that (A_n)_{n \geq 0} satisfies a second order linear recurrence of the form <br /> A_{n+2} + pA_{n+1} + qA_n = 0, which has general solution <br /> A_n = C\lambda_1^n + D \lambda_2^n where C and D are constants determined by the values of a_0 and a_1 and \lambda_1 and \lambda_2 are the roots of <br /> \lambda^2 + p\lambda + q = 0.<br />

You then have an expression for A_n in closed form and can proceed to determine whether or not \sum_{n=0}^\infty A_n converges.
It seems like the problem isn't linear though- An = 3An-2 / 4An-2
 
Dick said:
If you look closely you'll notice that your series consists of two interlaced ordinary geometric series.

Which can be rearranged under certain conditions, which you probably ought to first prove.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top