MHB Calc Expected Value & Variance of Multivar. Func.

TheFallen018
Messages
52
Reaction score
0
Hey, I've got this problem that I've been trying to crack for a while. I can't find any info for multi-variable expected values in my textbook, and I couldn't find a lot of stuff that made sense to me online. Here's the problem.

View attachment 8906
Find $E(C)$
Find $Var(C)$

I tried to get the limits from the normal distributions that were given. If I was doing it right, I had
$90\leq X \leq 130 $
$1.9\leq Y \leq 2.9$
for X and Y.

I think my main problem is that I'm not sure how to get $f(x)$ and $f(y)$ so that I can use the property
$E(aX+bY) = aE(X)+bE(Y)$
and
$E(x) = \int_{n}^{m}x*f(x)dx$
where $n \leq f(x) \leq m$.

I think I might be able to figure it out once I can work out what the functions should be, but I'm a little stuck here. Any help would be awesome. Thanks.
 

Attachments

  • Screenshot_53.png
    Screenshot_53.png
    8.1 KB · Views: 111
Last edited:
Mathematics news on Phys.org
You are told that X is normally distributed with mean 110 and standard deviation 20 (I am assuming that the second number, "$20^2$" is the variance that is the square of the standard deviation.) Whoever gave you this problem clearly expects you to know what the "normal distribution" is! The "f(x)" you want is $\frac{1}{\sqrt{2(\pi)(20^2)}}e^{-\frac{(x- 110)^2}{2(20^2)}} = \frac{1}{20\sqrt{2\pi}}e^{\frac{(x- 110)^2}{800}}$ and similarly for g(y). (You have "f(x)" and "f(y)" but they are not the same function!)

Look at https://en.wikipedia.org/wiki/Normal_distribution
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top