(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

(a) The quadratic Chebyshev approximation of a function on [-1, 1] can be obtained by finding the coefficients of an arbitrary quadratic y = ax^2 + bx + c which fit the function exactly at the points (-sqrt(3)/2), 0, (sqrt(3)/2). Find the quadratic Chebyshev approximation of e^x on [-1, 1]. Approximate a, b, c to 5 decimal places.

(b) Find the quadratic truncated Taylor series centered at 0 for e^x.

2. Relevant equations

e^x = ax^2 + bx + c

Maclaurin for e^x

3. The attempt at a solution

For part (a), I did not know how to find the quadratic Chebyshev approximation of e^x, but I plugged in the different values of x that were given into e^x = ax^2 + bx + c in order to get 3 equations with 3 unknowns. This gives me a ≈ 0.53204, b ≈ 1.12977, and c = 1.

As for part (b), since it asks for a truncated Taylor series, I assume I need a value to stop at. I really don't feel confident doing this. Do I need to simply write the Maclaurin series for e^x?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# [Calc II] quadratic Chebyshev approximation

**Physics Forums | Science Articles, Homework Help, Discussion**