Expanding (i) and Solving (ii): Find the Solution

  • Thread starter chwala
  • Start date
  • Tags
    Expanding
In summary, the conversation discusses an alternative approach for finding the values of a and b in a simultaneous equation problem involving the expansion of (4-x)^(-1/2). Part (i) expands the equation and part (ii) uses this expansion to find the values of a and b. The alternative approach involves substituting x=0 directly. This approach is deemed acceptable and results in the same values for a and b.
  • #1
chwala
Gold Member
2,766
395
Homework Statement
See attached problem with ms
Relevant Equations
binomial theorem
Find question here and ms... In part ##i## we could just as well expand directly hence reason why i am sharing...

1652569825633.png
1652569864876.png


1652569923412.png


My direct expansion for part (i),

$$(4-x)^{-\frac{1}{2}} =4^{-\frac{1}{2}}+\frac{(\frac{-1}{2}⋅4^{-\frac{3}{2}}⋅-x)}{1!}+\frac {(\frac{3}{2}⋅\frac{1}{2}⋅4^-\frac{5}{2}⋅(-x)^2)}{2!}=\frac{1}{2}+\frac{1}{16}x+\frac{3}{256}x^2+...$$

part (ii) follows directly from (i),

##(a+bx)(\frac{1}{2}+\frac{1}{16}x+\frac{3}{256}x^2+...)=16-x...##
##\frac{1}{2}a+\frac{1}{16}ax+\frac{3}{256}ax^2+\frac{1}{2}bx+\frac{1}{16}bx^2+\frac{3}{256}bx^3+...=16-x...##

giving us the two simultaneous equations indicated. cheers
 
Last edited:
Physics news on Phys.org
  • #2
As an alternative way
[tex](\frac{a+bx}{\sqrt{4-x}})_{x=0}=\frac{a}{2}=16[/tex]
a=32
[tex](\frac{32+bx}{\sqrt{4-x}})'_{x=0}=\frac{b+4}{2}=-1[/tex]
b=-6
 
  • Like
Likes chwala
  • #3
anuttarasammyak said:
As an alternative way
[tex](\frac{a+bx}{\sqrt{4-x}})_{x=0}=\frac{a}{2}=16[/tex]
a=32
[tex](\frac{32+bx}{\sqrt{4-x}})'_{x=0}=\frac{b+4}{2}=-1[/tex]
b=-6
Smart move there @anuttarasammyak ...just wondering if this approach would be acceptable, i.e substituting ##x=0## directly ... are we not supposed to make use of part (i) though?

I can see that its a B mark, thus acceptable...cheers
 
Last edited:
Back
Top