Calc d<p>/dt: Calculate Derivative of Wave Function

  • Thread starter Thread starter Cogswell
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on calculating the time derivative of the wave function, specifically ## \dfrac{d

}{dt} ##, using the Schrödinger equation. The solution involves integrating the wave function and applying the product rule for differentiation. Key results include the expressions for the time derivatives of the wave function and its conjugate, leading to the conclusion that ## \left< -\dfrac{\partial V}{\partial x} \right> ## represents the expected value of the force acting on the system. The discussion emphasizes the importance of integration by parts to manipulate the derivatives effectively.

PREREQUISITES
  • Understanding of the Schrödinger equation and its components
  • Familiarity with quantum mechanics concepts such as wave functions and operators
  • Knowledge of calculus, particularly integration and differentiation techniques
  • Experience with complex numbers and their applications in physics
NEXT STEPS
  • Study the implications of the Schrödinger equation in quantum mechanics
  • Learn about integration by parts in the context of quantum mechanics
  • Explore the concept of expected values in quantum systems
  • Investigate the role of potential energy functions in wave function behavior
USEFUL FOR

Students and professionals in physics, particularly those specializing in quantum mechanics, as well as anyone interested in the mathematical foundations of wave functions and their derivatives.

Cogswell
Messages
54
Reaction score
0

Homework Statement


Calculate ## \dfrac{d <p>}{dt} ##

Answer: ## \left< -\dfrac{\partial V}{\partial x} \right> ##

Homework Equations



Schrödinger equation: ## i \hbar \dfrac{\partial \Psi}{\partial t} = -\dfrac{\hbar ^2}{2m} \frac{\partial ^2 \Psi}{\partial x^2} + V \Psi ##

The Attempt at a Solution



Here's what I did:

## \displaystyle \dfrac{\partial}{\partial t} \int^{\infty}_{- \infty} \Psi ^* \left( \dfrac{\hbar}{i} \dfrac{\partial}{\partial x} \right) \Psi dx ##

## \displaystyle \dfrac{\hbar}{i} \int^{\infty}_{- \infty} \dfrac{\partial}{\partial t} \Psi ^* \dfrac{\partial \Psi}{\partial x} dx ##

## \displaystyle \dfrac{\hbar}{i} \int^{\infty}_{- \infty} \left[ \dfrac{\partial \Psi ^*}{\partial t} \dfrac{\partial \Psi}{\partial x} + \Psi^* \dfrac{\partial}{\partial t} \dfrac{\partial \Psi}{\partial x} \right] dx ## (Differentiation by Product rule)From the Schrödinger equation we get that: ## \dfrac{\partial \Psi}{\partial t} = \dfrac{i \hbar}{2m} \dfrac{\partial ^2 \Psi}{\partial x^2} - \dfrac{i}{\hbar} V \Psi ##

And it's conjugate: ## \dfrac{\partial \Psi ^*}{\partial t} = -\dfrac{i \hbar}{2m} \dfrac{\partial ^2 \Psi^*}{\partial x^2} + \dfrac{i}{\hbar} V \Psi^* ##

Putting those into my integral I get:

## \displaystyle \dfrac{\hbar}{i} \int^{\infty}_{- \infty} \left[ \left( -\dfrac{i \hbar}{2m} \frac{\partial ^2 \Psi^*}{\partial x^2} + \dfrac{i}{\hbar} V \Psi^* \right) \dfrac{\partial \Psi}{\partial x} + \Psi^* \dfrac{\partial}{\partial x} \left( \dfrac{i \hbar}{2m} \frac{\partial ^2 \Psi}{\partial x^2} - \dfrac{i}{\hbar} V \Psi \right) \right] dx ##

Expanding out everything:

## \displaystyle \dfrac{\hbar}{i} \int^{\infty}_{- \infty} \left[ -\dfrac{i \hbar}{2m} \frac{\partial ^2 \Psi^*}{\partial x^2} \dfrac{\partial \Psi}{\partial x} + \dfrac{i}{\hbar} V \Psi^* \dfrac{\partial \Psi}{\partial x} + \dfrac{i \hbar}{2m} \frac{\partial ^3 \Psi}{\partial x^3} \Psi^* - \dfrac{i}{\hbar} \Psi^* \dfrac{\partial}{\partial x} (V \Psi) \right] dx ##

## \displaystyle \dfrac{\hbar}{i} \int^{\infty}_{- \infty} \left[ -\dfrac{i \hbar}{2m} \frac{\partial ^2 \Psi^*}{\partial x^2} \dfrac{\partial \Psi}{\partial x} + \dfrac{i}{\hbar} V \Psi^* \dfrac{\partial \Psi}{\partial x} + \dfrac{i \hbar}{2m} \frac{\partial ^3 \Psi}{\partial x^3} \Psi^* - \dfrac{i}{\hbar} \dfrac{\partial V}{\partial x} \Psi \Psi * - \dfrac{i}{\hbar} \dfrac{\partial \Psi}{\partial x} V \Psi ^* \right] dx #### \displaystyle \dfrac{\hbar}{i} \int^{\infty}_{- \infty} \left[ \underbrace{-\dfrac{i \hbar}{2m} \frac{\partial ^2 \Psi^*}{\partial x^2} \dfrac{\partial \Psi}{\partial x}}_1 + \underbrace{\dfrac{i \hbar}{2m} \frac{\partial ^3 \Psi}{\partial x^3} \Psi^*}_2 - \underbrace{\dfrac{i}{\hbar} \dfrac{\partial V}{\partial x} \Psi \Psi *}_3 \right] dx ##

I'm stuck at this point. I'm presuming there's a way to cancel out each of the integrals? I know the last integral is the one I want but I do not know how to cancel out the first 2.
 
Physics news on Phys.org
I'd have kept the operator notation for longer, vis...

##
\renewcommand{H}{\hat{H}} \renewcommand{p}{\hat{p}}
\renewcommand{\expn}[1]{\left \langle #1 \right \rangle}
\renewcommand{dt}[1]{\frac{d #1}{dt}}
\renewcommand{dx}[1]{\frac{d #1}{dx}}
\renewcommand{intf}[1]{\int_{-\infty}^\infty #1 \; dx}
\renewcommand{ddx}[1]{ \frac{d^2 #1}{dx^2} }## Need to show:$$\text{(1)... }\dt{}\expn{\hat{p}} = \expn{-\dx{V}}$$ (i.e. Newton's second law...)
- expand: $$\begin{array}{rl}
i\hbar \dt{}\expn{\p} & = i\hbar \dt{} \intf {\Psi^\star p\Psi} \\
&= \intf { \left ( i\hbar \dt{} \Psi^\star \right ) \hat{p} \Psi + \Psi^\star \left ( i\hbar\dt{}(\hat{p}\Psi ) \right )} \; \text{ ...(2)}
\end{array}$$ - from the Schrödinger equation: $$\text{(3)... }i\hbar\dt{} \Psi = \H\Psi\\
\text{(4)... } \dt{}\expn{\p} = \frac{1}{i\hbar}\intf{ \H \Psi^\star \p\Psi + \Psi^\star \H\p\Psi} $$... hence, need to show that $$\text{(5)... } \H \Psi^\star \p\Psi + \Psi^\star \H\p\Psi = -i\hbar\Psi^\star \dx{V} \Psi$$ - which, I think, is pretty much where you are up to ;)
(caveat: do not rely on me to get the math right - check!)

- note that $$\text{(6)... }\p\H = - i\hbar \dx{} \left ( -\frac{\hbar^2}{2m}\ddx{}+V \right )$$ ... gives you third-order differentiation in x as well as the dV/dx you need.

So how do you change the order of the operations?
 
Last edited:
If you want to continue on from where you got to, use integration by parts to move ##\frac{\partial}{\partial x}## between ##\Psi## and ##\Psi^*##.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
3K
Replies
30
Views
4K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K