Calculate Definite Integral of arcos(tanx) from -pi/4 to pi/4

Click For Summary
SUMMARY

The definite integral of arcos(tan(x)) from -π/4 to π/4 evaluates to (π/2)², approximately 2.46740110027234. The solution involves a substitution where w = tan(x), leading to the transformation of the integral into I = ∫ from -1 to 1 of (cos⁻¹(w)/(w²+1)) dw. Integration by parts is applied, with u = cos⁻¹(w) and dv = (1/(w²+1)) dw, ultimately revealing that the remaining integral evaluates to zero due to its odd nature over symmetric limits.

PREREQUISITES
  • Understanding of definite integrals and antiderivatives
  • Familiarity with trigonometric identities and substitutions
  • Knowledge of integration techniques, specifically integration by parts
  • Proficiency in handling inverse trigonometric functions
NEXT STEPS
  • Study advanced integration techniques, focusing on integration by parts
  • Explore trigonometric substitutions in calculus
  • Learn about the properties of odd and even functions in integrals
  • Investigate the behavior of inverse trigonometric functions in definite integrals
USEFUL FOR

Students studying calculus, mathematicians interested in integral calculus, and educators teaching advanced integration techniques.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculate this definite integral?


Definite integral of arcos(tanx) dx from -pi/4 to pi/4
I know this isn't an easy antiderivative but my professor said there was a easy trick to compute this nonetheless.

I have posted a link there to this thread so the OP can view my work.
 
Physics news on Phys.org
Hello Jeremy,

We are given to evaluate:

$$I=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^{-1}\left(\tan(x) \right)\,dx$$

Consider the following substitution:

$$w=\tan(x)\,\therefore\,dw=\sec^2(x)\,dx$$

But, if we square the substitution and apply a Pythagorean identity, we find:

$$w^2=\tan^2(x)=\sec^2(x)-1\implies \sec^2(x)=w^2+1$$

And so we may state:

$$dx=\frac{1}{w^2+1}\,dw$$

And so our definite integral becomes:

$$I=\int_{-1}^{1} \frac{\cos^{-1}(w)}{w^2+1}\,dw$$

Applying integration by parts, let:

$$u=\cos^{-1}(w)\,\therefore\,du=-\frac{1}{\sqrt{1-w^2}}\,dw$$

$$dv=\frac{1}{w^2+1}\,dw\,\therefore\,v=\tan^{-1}(w)$$

Hence, we may state:

$$I=\left[\cos^{-1}(w)\tan^{-1}(w) \right]_{-1}^{1}+\int_{-1}^{1} \frac{\tan^{-1}(w)}{\sqrt{1-w^2}}\,dw$$

Now, observing that the remaining integrand is odd and the limits symmetric, we know it's value is zero, and so we are left with:

$$I=0\cdot\frac{\pi}{4}-\pi\left(-\frac{\pi}{4} \right)=\left(\frac{\pi}{2} \right)^2\approx2.46740110027234$$
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K
Replies
1
Views
10K