Hi guys, I have a question that I can't seem to wrap my head around.(adsbygoogle = window.adsbygoogle || []).push({});

This is the question:

A power reactor is fueled with slightly enriched uranium. At the end of core life (i.e., when it is about to be batch refueled), 30% of the power comes from the fissioning of the built up Pu-239. Calculate the effective value of β at the beginning and end of life; determine the percent increase or decrease.

I don't really know how to go about solving it but I assumed that the total number of neutrons born in fission is equal to those born from Uranium (U-233 and U-238) plus those born from Plutonium (Pu-239). So my fraction at the beginning is equal to β(Pu-239) + β(U-233) + β(U-235) = 0.0021 + 0.0026 + 0.0065.

But the how does power relate to how I would calculate β anyway and how would I use that to find my fraction at the end of life?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Calculate delayed neutron fraction

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**