Calculate E and B fields when given A

Lambda96
Messages
233
Reaction score
77
Homework Statement
Calculate ##\vec{B}(t,\vec{x})##
Relevant Equations
none
Hi

I'm not sure if I calculated the magnetic field from task a) correct?

Bildschirmfoto 2024-11-16 um 12.03.26.png

for calculatin ##\vec{B}## i used, the formular ##\vec{B}=\vec{\nabla} x \vec{A}##

$$\vec{B}=\left(\begin{array}{c} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} \end{array}\right) \times \left(\begin{array}{c} A_0\cdot e^{-i(k_1x_1-\omega t)} \\ A_0\cdot e^{-i(k_2x_2-\omega t)} \\ A_0\cdot e^{-i(k_3x_3-\omega t)} \end{array}\right)=\left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right)$$

Is that right?
 
Physics news on Phys.org
It looks like you misinterpreted the components of the vector potential.
 
  • Like
Likes Lambda96 and PhDeezNutz
Thank you kuruman for your help 👍

Should the calculation look like this?

$$\vec{B}=\left(\begin{array}{c} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} \end{array}\right) \times \left(\begin{array}{c} A_x\cdot e^{-i(k_1x_1+k_2x_2+k_3x_3-\omega t)} \\ A_y\cdot e^{-i(k_1x_1+k_2x_2+k_3x_3-\omega t)} \\ A_z\cdot e^{-i(k_1x_1+k_2x_2+k_3x_3-\omega t)} \end{array}\right)$$
 
Much better, but it seems that you think that ##~e^{-i(k_1x_1+k_2x_2+k_3x_3-\omega t)}~## is some kind of a vector. It is not and no \cdot is needed on the right hand side.

Also, since you are given the constant vector ##\mathbf A_0## and you are using numbers as subscripts, it would be consistent to write it as $$\vec{B}=\left(\begin{array}{c} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} \end{array}\right) \times \left(\begin{array}{c} A_{01} ~e^{-i(k_1x_1+k_2x_2+k_3x_3-\omega t)} \\ A_{02} ~e^{-i(k_1x_1+k_2x_2+k_3x_3-\omega t)} \\ A_{03} ~e^{-i(k_1x_1+k_2x_2+k_3x_3-\omega t)} \end{array}\right).$$
 
  • Like
Likes PhDeezNutz, Lambda96 and TSny
Thank you kuruman for your help 👍 , I have now adjusted the notation in my submission
 
To add to what has already been said, you seem to insist in writing out all of your expressions on component form. While this may be instructive in the beginning, we invented vector notation precisely to not have to do this. Your entire computation would be simpler in vector notation using the vector identity ##\nabla \times (\phi \vec V) = \phi \nabla \times \vec V - \vec V \times \nabla \phi##, where ##\vec V## is an arbitrary vector field and ##\phi## is an arbitrary scalar field.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top