- #1
- 45
- 0
[SOLVED] grad operation
Calculate grad([tex]\Phi[/tex]) in terms of r and r, where [tex]\Phi[/tex]=[tex]\frac{1}{r^{3}}[/tex]
r= xi + yj + zk
r = magnitude (r)
The r cubed term is scalar by the way, it comes out looking bold for some reason.
[tex]\Phi[/tex] = ( [tex]\sqrt{x^{2} + y^{2} + z^{2}}[/tex] [tex])^{-3}[/tex] = [tex](x^{2} + y^{2} + z^{2})[/tex][tex]^{\frac{-3}{2}}[/tex]
grad[tex]\Phi[/tex] = [tex]\frac{\partial \Phi}{\partial x}[/tex]i + [tex]\frac{\partial \Phi}{\partial y}[/tex]j + [tex]\frac{\partial \Phi}{\partial z}[/tex]k
[tex]\frac{\partial \Phi}{\partial x}[/tex] [tex]\Rightarrow[/tex] let [tex](x^{2} + y^{2} + z^{2})[/tex] = u
[tex]\frac{\partial \Phi}{\partial u}[/tex] = [tex]\frac{-3}{2}u^{\frac{-5}{2}}[/tex]
[tex]\frac{\partial u}{\partial x}[/tex] = 2x
[tex]\frac{\partial \Phi}{\partial x}[/tex] = 2x([tex]\frac{-3}{2}u^{\frac{-5}{2}}[/tex])
= -3x([tex](x^{2} + y^{2} + z^{2})[/tex][tex])^{\frac{-5}{2}}[/tex] = -3x( [tex]\frac{1}{r^{5}}[/tex] )
differentials with respect to y and z will be identical except swapping -3x for -3y and -3z.
These will be the terms for i j and k
Giving a final answer of
-[tex]\frac{3}{r^{5}}[/tex] (r).
EDIT (again the r^5 term is the magnitude not the vector)
Is this the correct solution? can anybody help?
Homework Statement
Calculate grad([tex]\Phi[/tex]) in terms of r and r, where [tex]\Phi[/tex]=[tex]\frac{1}{r^{3}}[/tex]
r= xi + yj + zk
r = magnitude (r)
The r cubed term is scalar by the way, it comes out looking bold for some reason.
The Attempt at a Solution
[tex]\Phi[/tex] = ( [tex]\sqrt{x^{2} + y^{2} + z^{2}}[/tex] [tex])^{-3}[/tex] = [tex](x^{2} + y^{2} + z^{2})[/tex][tex]^{\frac{-3}{2}}[/tex]
grad[tex]\Phi[/tex] = [tex]\frac{\partial \Phi}{\partial x}[/tex]i + [tex]\frac{\partial \Phi}{\partial y}[/tex]j + [tex]\frac{\partial \Phi}{\partial z}[/tex]k
[tex]\frac{\partial \Phi}{\partial x}[/tex] [tex]\Rightarrow[/tex] let [tex](x^{2} + y^{2} + z^{2})[/tex] = u
[tex]\frac{\partial \Phi}{\partial u}[/tex] = [tex]\frac{-3}{2}u^{\frac{-5}{2}}[/tex]
[tex]\frac{\partial u}{\partial x}[/tex] = 2x
[tex]\frac{\partial \Phi}{\partial x}[/tex] = 2x([tex]\frac{-3}{2}u^{\frac{-5}{2}}[/tex])
= -3x([tex](x^{2} + y^{2} + z^{2})[/tex][tex])^{\frac{-5}{2}}[/tex] = -3x( [tex]\frac{1}{r^{5}}[/tex] )
differentials with respect to y and z will be identical except swapping -3x for -3y and -3z.
These will be the terms for i j and k
Giving a final answer of
-[tex]\frac{3}{r^{5}}[/tex] (r).
EDIT (again the r^5 term is the magnitude not the vector)
Is this the correct solution? can anybody help?