I Calculate limits as distributions

Haorong Wu
Messages
417
Reaction score
90
TL;DR Summary
How to calculate the following limits, when viewed as distributions?
Hi, there. I am reading this thesis. On page 146, it reads that

when viewed as distributions, one can show that the following limits holds:
$$\lim_{r\rightarrow \infty}\frac {\sin ((Q-Q')r)}{Q-Q'}=\pi \delta(Q-Q') ,$$
$$\lim_{r\rightarrow \infty}\frac {\cos ((Q+Q')r)}{Q+Q'}=0 .$$

I do not know how to calculate the limits when they are viewed as distributions. I am trying to integrate a test function with the limits. So I try (##Q## is defined as ##Q>0##) $$\lim_ {r\rightarrow \infty} \int_{0}^\infty dQ \cos ((Q-Q')r )\frac {\sin ((Q-Q')r)}{Q-Q'}=\frac \pi 2,$$ while ##\int_{-\infty}^\infty dQ \cos ((Q-Q')r ) \delta (Q-Q')=1##. Then I only have ##\lim_{r\rightarrow \infty}\frac {\sin ((Q-Q')r)}{Q-Q'}=\pi \delta(Q-Q') /2##. Is this wrong? Thanks.
 
Physics news on Phys.org
Haorong Wu said:
TL;DR Summary: How to calculate the following limits, when viewed as distributions?

Hi, there. I am reading this thesis. On page 146, it reads that
I do not know how to calculate the limits when they are viewed as distributions. I am trying to integrate a test function with the limits. So I try (##Q## is defined as ##Q>0##) $$\lim_ {r\rightarrow \infty} \int_{0}^\infty dQ \cos ((Q-Q')r )\frac {\sin ((Q-Q')r)}{Q-Q'}=\frac \pi 2,$$
I have no real answer for you, just a comment.
You need to show that the limit on the left of your equation has the sifting property just like a delta distribution has.
So the integral you state should give cos(Q') if you put cos(Q) (rather than cos(Q-Q')) into the integrand.
You ought to show this in general though: f(Q) is turned into f(Q') by the sifting integral.
 
I would expand <br /> \sin r(Q - Q&#039;) = \frac{e^{ir(Q-Q&#039;)} -e^{-ir(Q-Q&#039;)}}{2i} and express the integral <br /> \int_{-\infty}^\infty f(Q) \frac{\sin(r(Q-Q&#039;))}{Q-Q&#039;}\,dQ as a sum of fourier transforms.
 
  • Like
Likes Philip Koeck
Thanks, @Philip Koeck and @pasmith. I will try to demonstrate the first expression.

Suppose ##F(\omega)## is the Fourier transform of ##f(Q)##, i.e., ##f(Q)=(2\pi)^{-1/2} \int d\omega F(\omega) e^{-i\omega Q}##. Then the integral \begin{align}
&~~\lim_{r\rightarrow \infty} \int_0^\infty dQ f(Q) \frac {\sin ((Q-Q')r)}{Q-Q'} \nonumber \\
&=\lim_{r\rightarrow \infty} \int_0^\infty dQ (2\pi)^{-1/2} \int d\omega F(\omega) e^{-i\omega Q} \frac {\sin ((Q-Q')r)}{Q-Q'} \nonumber \\
&=(2\pi)^{-1/2} \int d\omega F(\omega) e^{-i\omega Q' } \lim_{r\rightarrow \infty} \int_0^\infty dQ e^{-i\omega (Q-Q')} \frac {\sin ((Q-Q')r)}{Q-Q'}.\nonumber
\end{align} Letting ##x=Q-Q'##, we have ##\lim_{r\rightarrow \infty} \int_0^\infty dQ e^{-i\omega (Q-Q')} \frac {\sin ((Q-Q')r)}{Q-Q'}=\lim_{r\rightarrow \infty}\int_{-Q'}^\infty dx e^{-i\omega x}\frac {\sin (xr)}{x}##. Further, setting ##y=xr##. it becomes \begin{align}&~~\lim_{r\rightarrow \infty}\int_{-\infty}^\infty dy e^{-i\omega y/r}\frac {\sin (y)}{y} \nonumber \\
&=\lim_{r\rightarrow \infty}\int_0^\infty dy (e^{-i\omega y/r}\frac {\sin (y)}{y}+e^{i\omega y/r}\frac {\sin (y)}{y})\nonumber \\
&=\lim_{r\rightarrow \infty}\int_0^\infty dy 2\cos(\frac {\omega y}{r})\frac {\sin (y)}{y}\nonumber \\ &=\int_0^\infty dy 2\frac {\sin (y)}{y}=\pi. \nonumber\end{align}
Therefore, ##\lim_{r\rightarrow \infty} \int_0^\infty dQ f(Q) \frac {\sin ((Q-Q')r)}{Q-Q'}=\pi (2\pi)^{1/2} \int d\omega F(\omega) e^{-i\omega Q' }=\pi f(Q')##. Hence ##\lim_{r\rightarrow \infty} \frac {\sin ((Q-Q')r)}{Q-Q'}=\pi \delta(Q-Q')##.

Is the demonstration correct?
 
  • Like
Likes Philip Koeck
Haorong Wu said:
Thanks, @Philip Koeck and @pasmith. I will try to demonstrate the first expression.

Suppose ##F(\omega)## is the Fourier transform of ##f(Q)##, i.e., ##f(Q)=(2\pi)^{-1/2} \int d\omega F(\omega) e^{-i\omega Q}##. Then the integral \begin{align}
&~~\lim_{r\rightarrow \infty} \int_0^\infty dQ f(Q) \frac {\sin ((Q-Q')r)}{Q-Q'} \nonumber \\
&=\lim_{r\rightarrow \infty} \int_0^\infty dQ (2\pi)^{-1/2} \int d\omega F(\omega) e^{-i\omega Q} \frac {\sin ((Q-Q')r)}{Q-Q'} \nonumber \\
&=(2\pi)^{-1/2} \int d\omega F(\omega) e^{-i\omega Q' } \lim_{r\rightarrow \infty} \int_0^\infty dQ e^{-i\omega (Q-Q')} \frac {\sin ((Q-Q')r)}{Q-Q'}.\nonumber
\end{align} Letting ##x=Q-Q'##, we have ##\lim_{r\rightarrow \infty} \int_0^\infty dQ e^{-i\omega (Q-Q')} \frac {\sin ((Q-Q')r)}{Q-Q'}=\lim_{r\rightarrow \infty}\int_{-Q'}^\infty dx e^{-i\omega x}\frac {\sin (xr)}{x}##. Further, setting ##y=xr##. it becomes \begin{align}&~~\lim_{r\rightarrow \infty}\int_{-\infty}^\infty dy e^{-i\omega y/r}\frac {\sin (y)}{y} \nonumber \\
&=\lim_{r\rightarrow \infty}\int_0^\infty dy (e^{-i\omega y/r}\frac {\sin (y)}{y}+e^{i\omega y/r}\frac {\sin (y)}{y})\nonumber \\
&=\lim_{r\rightarrow \infty}\int_0^\infty dy 2\cos(\frac {\omega y}{r})\frac {\sin (y)}{y}\nonumber \\ &=\int_0^\infty dy 2\frac {\sin (y)}{y}=\pi. \nonumber\end{align}
Therefore, ##\lim_{r\rightarrow \infty} \int_0^\infty dQ f(Q) \frac {\sin ((Q-Q')r)}{Q-Q'}=\pi (2\pi)^{1/2} \int d\omega F(\omega) e^{-i\omega Q' }=\pi f(Q')##. Hence ##\lim_{r\rightarrow \infty} \frac {\sin ((Q-Q')r)}{Q-Q'}=\pi \delta(Q-Q')##.

Is the demonstration correct?
Looks good to me.
 

Similar threads

Replies
12
Views
3K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
3
Views
2K
Replies
1
Views
1K
Replies
3
Views
3K
Back
Top