I Calculate limits as distributions

Click For Summary
The discussion focuses on calculating limits as distributions, specifically the limits involving sine and cosine functions. The key limits discussed are that as r approaches infinity, the sine limit converges to πδ(Q-Q') and the cosine limit approaches zero. Participants suggest demonstrating the sifting property of the delta function through integration techniques, including Fourier transforms. The integration process is elaborated, confirming that the limit of the sine function indeed results in πδ(Q-Q'). The final consensus is that the demonstration presented is correct.
Haorong Wu
Messages
417
Reaction score
90
TL;DR
How to calculate the following limits, when viewed as distributions?
Hi, there. I am reading this thesis. On page 146, it reads that

when viewed as distributions, one can show that the following limits holds:
$$\lim_{r\rightarrow \infty}\frac {\sin ((Q-Q')r)}{Q-Q'}=\pi \delta(Q-Q') ,$$
$$\lim_{r\rightarrow \infty}\frac {\cos ((Q+Q')r)}{Q+Q'}=0 .$$

I do not know how to calculate the limits when they are viewed as distributions. I am trying to integrate a test function with the limits. So I try (##Q## is defined as ##Q>0##) $$\lim_ {r\rightarrow \infty} \int_{0}^\infty dQ \cos ((Q-Q')r )\frac {\sin ((Q-Q')r)}{Q-Q'}=\frac \pi 2,$$ while ##\int_{-\infty}^\infty dQ \cos ((Q-Q')r ) \delta (Q-Q')=1##. Then I only have ##\lim_{r\rightarrow \infty}\frac {\sin ((Q-Q')r)}{Q-Q'}=\pi \delta(Q-Q') /2##. Is this wrong? Thanks.
 
Physics news on Phys.org
Haorong Wu said:
TL;DR Summary: How to calculate the following limits, when viewed as distributions?

Hi, there. I am reading this thesis. On page 146, it reads that
I do not know how to calculate the limits when they are viewed as distributions. I am trying to integrate a test function with the limits. So I try (##Q## is defined as ##Q>0##) $$\lim_ {r\rightarrow \infty} \int_{0}^\infty dQ \cos ((Q-Q')r )\frac {\sin ((Q-Q')r)}{Q-Q'}=\frac \pi 2,$$
I have no real answer for you, just a comment.
You need to show that the limit on the left of your equation has the sifting property just like a delta distribution has.
So the integral you state should give cos(Q') if you put cos(Q) (rather than cos(Q-Q')) into the integrand.
You ought to show this in general though: f(Q) is turned into f(Q') by the sifting integral.
 
I would expand <br /> \sin r(Q - Q&#039;) = \frac{e^{ir(Q-Q&#039;)} -e^{-ir(Q-Q&#039;)}}{2i} and express the integral <br /> \int_{-\infty}^\infty f(Q) \frac{\sin(r(Q-Q&#039;))}{Q-Q&#039;}\,dQ as a sum of fourier transforms.
 
  • Like
Likes Philip Koeck
Thanks, @Philip Koeck and @pasmith. I will try to demonstrate the first expression.

Suppose ##F(\omega)## is the Fourier transform of ##f(Q)##, i.e., ##f(Q)=(2\pi)^{-1/2} \int d\omega F(\omega) e^{-i\omega Q}##. Then the integral \begin{align}
&~~\lim_{r\rightarrow \infty} \int_0^\infty dQ f(Q) \frac {\sin ((Q-Q')r)}{Q-Q'} \nonumber \\
&=\lim_{r\rightarrow \infty} \int_0^\infty dQ (2\pi)^{-1/2} \int d\omega F(\omega) e^{-i\omega Q} \frac {\sin ((Q-Q')r)}{Q-Q'} \nonumber \\
&=(2\pi)^{-1/2} \int d\omega F(\omega) e^{-i\omega Q' } \lim_{r\rightarrow \infty} \int_0^\infty dQ e^{-i\omega (Q-Q')} \frac {\sin ((Q-Q')r)}{Q-Q'}.\nonumber
\end{align} Letting ##x=Q-Q'##, we have ##\lim_{r\rightarrow \infty} \int_0^\infty dQ e^{-i\omega (Q-Q')} \frac {\sin ((Q-Q')r)}{Q-Q'}=\lim_{r\rightarrow \infty}\int_{-Q'}^\infty dx e^{-i\omega x}\frac {\sin (xr)}{x}##. Further, setting ##y=xr##. it becomes \begin{align}&~~\lim_{r\rightarrow \infty}\int_{-\infty}^\infty dy e^{-i\omega y/r}\frac {\sin (y)}{y} \nonumber \\
&=\lim_{r\rightarrow \infty}\int_0^\infty dy (e^{-i\omega y/r}\frac {\sin (y)}{y}+e^{i\omega y/r}\frac {\sin (y)}{y})\nonumber \\
&=\lim_{r\rightarrow \infty}\int_0^\infty dy 2\cos(\frac {\omega y}{r})\frac {\sin (y)}{y}\nonumber \\ &=\int_0^\infty dy 2\frac {\sin (y)}{y}=\pi. \nonumber\end{align}
Therefore, ##\lim_{r\rightarrow \infty} \int_0^\infty dQ f(Q) \frac {\sin ((Q-Q')r)}{Q-Q'}=\pi (2\pi)^{1/2} \int d\omega F(\omega) e^{-i\omega Q' }=\pi f(Q')##. Hence ##\lim_{r\rightarrow \infty} \frac {\sin ((Q-Q')r)}{Q-Q'}=\pi \delta(Q-Q')##.

Is the demonstration correct?
 
  • Like
Likes Philip Koeck
Haorong Wu said:
Thanks, @Philip Koeck and @pasmith. I will try to demonstrate the first expression.

Suppose ##F(\omega)## is the Fourier transform of ##f(Q)##, i.e., ##f(Q)=(2\pi)^{-1/2} \int d\omega F(\omega) e^{-i\omega Q}##. Then the integral \begin{align}
&~~\lim_{r\rightarrow \infty} \int_0^\infty dQ f(Q) \frac {\sin ((Q-Q')r)}{Q-Q'} \nonumber \\
&=\lim_{r\rightarrow \infty} \int_0^\infty dQ (2\pi)^{-1/2} \int d\omega F(\omega) e^{-i\omega Q} \frac {\sin ((Q-Q')r)}{Q-Q'} \nonumber \\
&=(2\pi)^{-1/2} \int d\omega F(\omega) e^{-i\omega Q' } \lim_{r\rightarrow \infty} \int_0^\infty dQ e^{-i\omega (Q-Q')} \frac {\sin ((Q-Q')r)}{Q-Q'}.\nonumber
\end{align} Letting ##x=Q-Q'##, we have ##\lim_{r\rightarrow \infty} \int_0^\infty dQ e^{-i\omega (Q-Q')} \frac {\sin ((Q-Q')r)}{Q-Q'}=\lim_{r\rightarrow \infty}\int_{-Q'}^\infty dx e^{-i\omega x}\frac {\sin (xr)}{x}##. Further, setting ##y=xr##. it becomes \begin{align}&~~\lim_{r\rightarrow \infty}\int_{-\infty}^\infty dy e^{-i\omega y/r}\frac {\sin (y)}{y} \nonumber \\
&=\lim_{r\rightarrow \infty}\int_0^\infty dy (e^{-i\omega y/r}\frac {\sin (y)}{y}+e^{i\omega y/r}\frac {\sin (y)}{y})\nonumber \\
&=\lim_{r\rightarrow \infty}\int_0^\infty dy 2\cos(\frac {\omega y}{r})\frac {\sin (y)}{y}\nonumber \\ &=\int_0^\infty dy 2\frac {\sin (y)}{y}=\pi. \nonumber\end{align}
Therefore, ##\lim_{r\rightarrow \infty} \int_0^\infty dQ f(Q) \frac {\sin ((Q-Q')r)}{Q-Q'}=\pi (2\pi)^{1/2} \int d\omega F(\omega) e^{-i\omega Q' }=\pi f(Q')##. Hence ##\lim_{r\rightarrow \infty} \frac {\sin ((Q-Q')r)}{Q-Q'}=\pi \delta(Q-Q')##.

Is the demonstration correct?
Looks good to me.
 

Similar threads

Replies
12
Views
3K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
3
Views
2K
Replies
1
Views
2K
Replies
3
Views
3K