Calculate new height of truncated cone

  • Context: Undergrad 
  • Thread starter Thread starter tjosan
  • Start date Start date
  • Tags Tags
    Cone Height Truncated
Click For Summary
SUMMARY

The discussion focuses on calculating the new height of a truncated cone after reducing its volume. The volume of the truncated cone is given by the formula V=1/3*pi*H*(R^2+R*r+r^2), where R is the lower radius, r is the upper radius, and H is the height. The user proposes a method involving the ratio C between height and radius, leading to the equations H1=C*(R-r1) and V1=1/3*pi*H1*(R^2+R*r1+r1^2). An alternative approach suggests simplifying the volume function to V(h) = kh^3, where k is a constant, to facilitate calculations.

PREREQUISITES
  • Understanding of geometric shapes, specifically truncated cones
  • Familiarity with volume calculations for cones and frustums
  • Basic algebra and ability to solve equations
  • Knowledge of LaTeX for formatting mathematical expressions
NEXT STEPS
  • Research the properties of truncated cones and their volume formulas
  • Learn how to derive relationships between dimensions of geometric shapes
  • Study methods for solving cubic equations in algebra
  • Explore the use of LaTeX for presenting mathematical equations clearly
USEFUL FOR

Mathematicians, engineering students, and anyone involved in geometric calculations or fluid dynamics who needs to understand the properties of truncated cones and volume adjustments.

tjosan
Messages
32
Reaction score
2
Hi,

Suppose you have a truncated cone filled water with the lower radius being R, and upper r (R>r), and the height is H.

R, r and H is known so the volume, V, can be calculated using V=1/3*pi*H*(R^2+R*r+r^2). Now suppose you remove some water so that you end up with a lower volume, V1.

The water surface will now have a radius of r1, and the height will be h. The overall shape of the cone will remain the same though, its just that the surface has moved down.

How can I calculate the new height? I cannot wrap my head around this. First I just used the new volume in the formula above and solved for H, but then I realized the upper radius isn't the same anymore, so that wont work.

I attached an image to illustrate.

Thanks!
 

Attachments

  • cone.png
    cone.png
    2.3 KB · Views: 211
Mathematics news on Phys.org
think about how the radius of the cone changes with height.
 
  • Like
Likes   Reactions: FactChecker
Dr Transport said:
think about how the radius of the cone changes with height.
I think I solved it.

The ratio, C, between the H and R-r must remain the same for the new cone (because the angle is the same, tan (angle) = constant) , so C = H/(R-r) = H1/(R-r1) => H1=C*(R-r1) [1]

V1=1/3*pi*H1*(R^2+R*r1+r1^2) = 1/3*pi*C*(R-r1)*(R^2+R*r1+r1^2), where r1 is the new upper radius, V1 is the new volume. Solve for r1 and then use equation [1] to solve for H1.
 
tjosan said:
The ratio, C, between the H and R-r must remain the same for the new cone (because the angle is the same, tan (angle) = constant) , so C = H/(R-r) = H1/(R-r1) => H1=C*(R-r1) [1]

V1=1/3*pi*H1*(R^2+R*r1+r1^2) = 1/3*pi*C*(R-r1)*(R^2+R*r1+r1^2), where r1 is the new upper radius, V1 is the new volume. Solve for r1 and then use equation [1] to solve for H1.
Your method should work (I haven’t tried it) but it looks like you will end-up having to solve a really messy cubic equation in ##r_1##.

Here are some hints for an alternative approach.

With conventional notation, the volume of a cone is ##V(r, h) = \frac 13 \pi r^2 h##. The difficulty here is that ##V## is a function of 2 variables, ##r## and ##h##. In your question, the cone angle is effectively given; this gives a simple relationship between ##r## and ##h##. You should be able to show that ##V(h) = kh^3## where ##k## is a constant. ##V(h) ## is now a sinple function of the single variable ##h##.

(You have enough information to find ##k## and the height of the ‘full’ cone in terms of the given data.)

The required frustum is the part of a full cone which remains after the cone’s ‘tip’ (itself a cone) is removed. ##V_{frustum} = V_{full cone}~-~V_{tip}##.

Using the above gives a more manageable way to find '##h_1##'. But it’s still a bit messy.

(Note. We prefer LaTeX for equations here. The link to a guide is https://www.physicsforums.com/help/latexhelp/). This is the link shown at the bottom left of the edit window.)
 
  • Like
Likes   Reactions: Lnewqban

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 18 ·
Replies
18
Views
7K
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K