Calculate the charge on an oil droplet

AI Thread Summary
The discussion centers on calculating the charge of an oil droplet, with one participant noting a discrepancy between their result of 6.67 x 10^-19C and the book's answer of 3.2 x 10^-19C. Participants agree that the book likely contains an error and emphasize the importance of including the negative sign for charge and rounding to two significant figures. They suggest using a systematic approach by combining formulas before performing calculations. Additionally, they recommend including units in intermediate steps and working with symbols for clarity. Overall, the conversation highlights common pitfalls in physics calculations and encourages best practices.
Shaye
Messages
20
Reaction score
7
Homework Statement
A tiny negatively charged oil drop is held stationary in the electric field between two horizontal parallel plates, as shown below (please see attachment). Its mass is 4.0x10^-15kg.

Question 15,b) Use the fact that the 2 forces balance to calculate the charge on the oil drop. (g = 10 N Kg^-1).
Relevant Equations
1. F - Ma
2. E = F/Q or E = V/D (Electric field strength)
The book gives an answer of Q = 3.2 x 10^-19C

I get an answer of 6.67 x 10^-19C. Workings below:

20220417_110122.LARGE.jpeg
20220407_114835.LARGE.jpeg
 
Physics news on Phys.org
Shaye said:
The book gives an answer of Q = 3.2 x 10^-19C

I get an answer of 6.67 x 10^-19C.
Hi @Shaye. I agree with your calculation. Looks like a mistake in the book.

Other points:
- don’t forget the minus sign for the charge;
- round the answer to 2 significant figures;
- in your intermediate step, when you find the value of the force, it’s good practice to include the unit (N);
- consider working in symbols and leaving the arithmetic to the end.
 
  • Like
Likes Shaye and PeroK
Steve4Physics said:
- consider working in symbols and leaving the arithmetic to the end.
I agree. At this level, I would expect you to combine two simple formulas before plugging in the numbers:
$$mg = qE = \frac{qV}{d} \ \Rightarrow \ q = \frac{mgd}{V}$$Then you do that on a calculator.
 
  • Like
Likes Shaye and Steve4Physics
Steve4Physics said:
Hi @Shaye. I agree with your calculation. Looks like a mistake in the book.

Other points:
- don’t forget the minus sign for the charge;
- round the answer to 2 significant figures;
- in your intermediate step, when you find the value of the force, it’s good practice to include the unit (N);
- consider working in symbols and leaving the arithmetic to the end.
Thanks @Steve4Physics
 
  • Like
Likes Steve4Physics
PeroK said:
I agree. At this level, I would expect you to combine two simple formulas before plugging in the numbers:
$$mg = qE = \frac{qV}{d} \ \Rightarrow \ q = \frac{mgd}{V}$$Then you do that on a calculator.
Yeah I should probably start to do this going forward @PeroK Good tip!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top