Calculate the charge on an oil droplet

Click For Summary
SUMMARY

The correct charge on an oil droplet is calculated to be Q = 6.67 x 10^-19C, contrary to the book's value of Q = 3.2 x 10^-19C. The discussion emphasizes the importance of including the negative sign for charge, rounding to two significant figures, and using proper units in calculations. Participants recommend combining formulas such as mg = qE and q = (mgd)/V before performing arithmetic operations to enhance accuracy.

PREREQUISITES
  • Understanding of electrostatics and charge calculations
  • Familiarity with the concepts of force (N) and electric field (E)
  • Ability to manipulate algebraic formulas
  • Basic proficiency in using scientific calculators
NEXT STEPS
  • Study the derivation of the formula q = (mgd)/V in detail
  • Learn about the significance of significant figures in scientific calculations
  • Explore the principles of electrostatics, particularly Coulomb's Law
  • Investigate common mistakes in charge calculations and how to avoid them
USEFUL FOR

Students in physics, educators teaching electrostatics, and anyone involved in experimental physics or charge measurement techniques.

Shaye
Messages
20
Reaction score
7
Homework Statement
A tiny negatively charged oil drop is held stationary in the electric field between two horizontal parallel plates, as shown below (please see attachment). Its mass is 4.0x10^-15kg.

Question 15,b) Use the fact that the 2 forces balance to calculate the charge on the oil drop. (g = 10 N Kg^-1).
Relevant Equations
1. F - Ma
2. E = F/Q or E = V/D (Electric field strength)
The book gives an answer of Q = 3.2 x 10^-19C

I get an answer of 6.67 x 10^-19C. Workings below:

20220417_110122.LARGE.jpeg
20220407_114835.LARGE.jpeg
 
Physics news on Phys.org
Shaye said:
The book gives an answer of Q = 3.2 x 10^-19C

I get an answer of 6.67 x 10^-19C.
Hi @Shaye. I agree with your calculation. Looks like a mistake in the book.

Other points:
- don’t forget the minus sign for the charge;
- round the answer to 2 significant figures;
- in your intermediate step, when you find the value of the force, it’s good practice to include the unit (N);
- consider working in symbols and leaving the arithmetic to the end.
 
  • Like
Likes   Reactions: Shaye and PeroK
Steve4Physics said:
- consider working in symbols and leaving the arithmetic to the end.
I agree. At this level, I would expect you to combine two simple formulas before plugging in the numbers:
$$mg = qE = \frac{qV}{d} \ \Rightarrow \ q = \frac{mgd}{V}$$Then you do that on a calculator.
 
  • Like
Likes   Reactions: Shaye and Steve4Physics
Steve4Physics said:
Hi @Shaye. I agree with your calculation. Looks like a mistake in the book.

Other points:
- don’t forget the minus sign for the charge;
- round the answer to 2 significant figures;
- in your intermediate step, when you find the value of the force, it’s good practice to include the unit (N);
- consider working in symbols and leaving the arithmetic to the end.
Thanks @Steve4Physics
 
  • Like
Likes   Reactions: Steve4Physics
PeroK said:
I agree. At this level, I would expect you to combine two simple formulas before plugging in the numbers:
$$mg = qE = \frac{qV}{d} \ \Rightarrow \ q = \frac{mgd}{V}$$Then you do that on a calculator.
Yeah I should probably start to do this going forward @PeroK Good tip!
 

Similar threads

Replies
12
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K