Calculate the circumference/diameter in this relativistic problem

  • Thread starter Thread starter LCSphysicist
  • Start date Start date
  • Tags Tags
    Relativistic
AI Thread Summary
The discussion revolves around calculating the circumference in a relativistic context using a specific equation for proper time in a rotating reference frame. The initial calculation attempts to derive the circumference but is deemed incorrect. The error is identified as misinterpreting the computation, which actually represents the proper time for an observer at the edge completing a full rotation, rather than the circumference itself. Clarification is provided that the relationship between proper time and circumference needs to be accurately understood in this relativistic scenario. The focus remains on resolving the misunderstanding of the calculations involved.
LCSphysicist
Messages
644
Reaction score
162
Homework Statement
> A record turntable of radius $R$ rotates at angular velocity $w$ (Fig.
> 12.15). The circumference is presumably Lorentz-contracted, but the radius (being perpendicular to the velocity) is not. What's the ratio
> of the circumference to the diameter, in terms of $w$ and $R$?
Relevant Equations
.
$$ds^2 = dt^2 - r^2 d\theta^2 = d\theta^2((dt/d\theta)^2-r^2) = d\theta^2((1/w)^2-r^2)$$ $$C = \Delta S = \int ds = \int \sqrt{(1/w^2-r^2)}d\theta = 2\pi \sqrt{(1/w^2-r^2)} $$ $$C/2r = \frac{\pi \sqrt{(1/w^2-r^2)}}{r} = \pi \sqrt{\frac{1}{(wr)^2}-1}$$

But this answer is wrong. And i don't know why. I can't see the problem on my reasoning. I have just calculated the distance at the rotating reference frame.
 
Physics news on Phys.org
Herculi said:
I have just calculated the distance at the rotating reference frame.
No, you have not. You have computed the proper time taken for an observer situated at the edge to complete a full turn and divided it by ##2r##.
 
  • Like
Likes LCSphysicist
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top