Calculate the probablity density and current density of a wavefunction

anchal2147
Messages
2
Reaction score
0
Homework Statement
Want to find the solution of part b,c and d
Relevant Equations
time evolution operator, momentum and position operator
i have use time evolution operator to get the wavefunction at any time "t" as Ψ(x,t) = U(t,t1) * Ψ(x,t1)
but i don't know how to calculate next part of the question
1665739995193.png
 
Physics news on Phys.org
Maybe it helps to enlarge your list of "relevant equations" by the probabilities asked for in (b) and for the probability density and current density in (c)...
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top