Calculate the rank correlation coefficient of the given problem

chwala
Gold Member
Messages
2,825
Reaction score
413
Homework Statement
See attached.
Relevant Equations
Spearman's rank correlation coefficient.
Find the problem and solution here; I am refreshing on this topic of Correlation.

1659967128371.png


The steps are pretty much clear..my question is on the given formula ##\textbf{R}##. Is it a generally and widely accepted formula or is it some form of improvised formula approach for repeated entries/data? How did they arrive at... ##m^3-m?## ... Any proofs? Supposing ##9## entries are repeated and ##1## entry is different would the formula still hold?
Are there other different ways of solving this particular problem?

Cheers...
 
Last edited:
Physics news on Phys.org
chwala said:
Homework Statement:: See attached.
Relevant Equations:: Spearman's rank correlation coefficient.

Find the problem and solution here; I am refreshing on this topic of Correlation.

View attachment 305574

The steps are pretty much clear..my question is on the given formula ##\textbf{R}##. Is it a generally and widely accepted formula or is it some form of improvised formula approach for repeated entries/data? How did they arrive at... ##m^3-m?## ... Any proofs? Supposing ##9## entries are repeated and ##1## entry is different would the formula still hold?
Are there other different ways of solving this particular problem?

Cheers...
This just measures the degree to which the two rankings agree. There are other such measures:

https://en.wikipedia.org/wiki/Rank_correlation

https://en.wikipedia.org/wiki/Rank_correlation/Spearman%27sSpearman's ##\rho## as a particular caseEdit: I think the expression ##m^3 -m## comes from properties of the Uniform Distribution

Edit 2 : Per the article linked, this is the case, i.e., the expression ##m^3-m ## ad others are derived from the Uniform Distribution:
Ranks are just elements of permutations
of ##S_n## , the group of permutations of the elements in ##\{ 1,2,3,..n\} ##
 
Last edited:
  • Like
Likes THAUROS and chwala
Thanks...let me look at the links and make some short notes. Cheers.
 
  • Like
Likes THAUROS and WWGD
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top