Find the correct value of the mean in the given problem

In summary, the problem is that the author does not specify the correct value of the mean, and the solution is to find the mean using the three methods given.
  • #1

chwala

Gold Member
2,446
316
Homework Statement
See attached.
Relevant Equations
Statistics
Find the problem and solution below;


1660488458534.png



1660488516492.png


Now the part i do not seem to understand from the given solution is the negative value i.e to be specific ##-0.06##
In my understanding we shall have ##5## possibilities with each giving the correct mean value of ##3.48## which implies ##+0.06## from the given value on the text unless they meant ##3.48- 0.06=3.42##
They also did not indicate the correct value of the mean rather the difference.

My approach to the solution is as follows;

Consider the consecutive scores##1=12## and ##2=9## then it follows that the correct value of the mean will be given by;

##(171-30)+1(9)+2(12)=174##

##\dfrac{174}{50}=3.48##


Consider the consecutive scores##2=12## and ##3=9## then it follows that the correct value of the mean will be given by;

##(171-51)+2(9)+3(12)=174##

##\dfrac{174}{50}=3.48##


Consider the consecutive scores##3=12## and ##4=9## then it follows that the correct value of the mean will be given by;

##(171-72)+3(9)+4(12)=174##

##\dfrac{174}{50}=3.48##

Consider the consecutive scores##4=12## and ##5=9## then it follows that the correct value of the mean will be given by;

##(171-93)+4(9)+5(12)=174##

##\dfrac{174}{50}=3.48##

Consider the consecutive scores##5=12## and ##6=9## then it follows that the correct value of the mean will be given by;

##(171-114)+5(9)+6(12)=174##

##\dfrac{174}{50}=3.48##

Of course i would appreciate any other better approach. Cheers guys.
 

Attachments

  • 1660488856153.png
    1660488856153.png
    15.9 KB · Views: 53
Physics news on Phys.org
  • #2
What if, e.g, it says 5=9 and 6=12 and then you had to swap them (so the opposite direction of your post)
 
  • #3
You could have used a variable, n, in your method:
Suppose the incorrect calculation included Incorrect=12n + 9(n+1) = 21n+9. Then the correct calculation would be Correct=9n+12(n+1) = 21n+12. The difference (removing the Incorrect and adding the Correct) would be -(21n+9)+(21n+12) = 3. That would change the final mean of the 50 samples by 3/50 = 0.06.
Now suppose the opposite mistake was made. A similar calculation says that the difference would be -3, giving a change of -3/50=-0.06.
 
  • #4
Office_Shredder said:
What if, e.g, it says 5=9 and 6=12 and then you had to swap them (so the opposite direction of your post)
True, we shall have a mean value of ##3.36##Thanks.
 
  • #5
FactChecker said:
You could have used a variable, n, in your method:
Suppose the incorrect calculation included Incorrect=12n + 9(n+1) = 21n+9. Then the correct calculation would be Correct=9n+12(n+1) = 21n+12. The difference (removing the Incorrect and adding the Correct) would be -(21n+9)+(21n+12) = 3. That would change the final mean of the 50 samples by 3/50 = 0.06.
Now suppose the opposite mistake was made. A similar calculation says that the difference would be -3, giving a change of -3/50=-0.06.
@FactChecker smart move there...
 

Suggested for: Find the correct value of the mean in the given problem

Replies
5
Views
821
Replies
8
Views
596
Replies
4
Views
572
Replies
6
Views
693
Replies
4
Views
545
Replies
13
Views
694
Replies
1
Views
50
Back
Top