Calculate the torque that is produced by this force on a cylinder

AI Thread Summary
The discussion centers on the calculation of torque produced by a force on a cylinder, specifically addressing the angle between the position vector (r) and the force vector (F). Participants clarify that the angle should be 120 degrees, not 30 degrees, when the vectors are aligned tail-to-tail. The relationship between the sine and cosine functions is highlighted, indicating that the book's assertion is incorrect. The confusion arises from misinterpreting the angle used in the torque formula. Overall, the correct angle for torque calculation is confirmed to be 120 degrees.
MatinSAR
Messages
673
Reaction score
204
Homework Statement
Please take a look at the picture :
Relevant Equations
torque = r F sin(r, F)
IMG_20230903_232642_013.jpg


Why it said that angle between r and F is 30?
I guess it should be 120 degrees... Am I wrong?
 
Physics news on Phys.org
As far as I can see, the length of the arm of the force respect to the center of rotation should be ##rcos30##.

63ff8d0b4fb6b3f197f8872f_moment1_perpendicular_distance.svg
 
  • Like
Likes MatinSAR and hutchphd
MatinSAR said:
Why it said that angle between r and F is 30?
It didn't say that. The angle between two vectors is obtained by putting them tail-to-tail. If you do that with r and F, you will get an angle of 120°. Then note that ##rF\sin(120^{\circ})=rF\cancel{\sin}\cos(30^{\circ}).##
 
Last edited:
kuruman said:
It didn't say that. The angle between two vectors is obtained by putting them tail-to-tail. If you do that with r and F, you will get an angle of 120°. Then note that ##rF\sin(120^{\circ})=rF\sin(30^{\circ}).##
You probably meant to write ##rF\sin(120^{\circ})=rF\cos(30^{\circ}).##
 
  • Like
Likes MatinSAR and kuruman
Steve4Physics said:
You probably meant to write ##rF\sin(120^{\circ})=rF\cos(30^{\circ}).##
Yes, of course. Good catch.
 
kuruman said:
It didn't say that. The angle between two vectors is obtained by putting them tail-to-tail. If you do that with r and F, you will get an angle of 120°. Then note that ##rF\sin(120^{\circ})=rF\cancel{\sin}\cos(30^{\circ}).##
So the book is wrong since sin30 isn't equal to sin120 degrees... @Lnewqban
@kuruman
@Steve4Physics
Thanks for your help and time.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...

Similar threads

Replies
8
Views
812
Replies
21
Views
312
Replies
12
Views
2K
Replies
6
Views
2K
Replies
13
Views
905
Replies
3
Views
613
Replies
20
Views
3K
Back
Top