Calculate the torque that is produced by this force on a cylinder

AI Thread Summary
The discussion centers on the calculation of torque produced by a force on a cylinder, specifically addressing the angle between the position vector (r) and the force vector (F). Participants clarify that the angle should be 120 degrees, not 30 degrees, when the vectors are aligned tail-to-tail. The relationship between the sine and cosine functions is highlighted, indicating that the book's assertion is incorrect. The confusion arises from misinterpreting the angle used in the torque formula. Overall, the correct angle for torque calculation is confirmed to be 120 degrees.
MatinSAR
Messages
673
Reaction score
204
Homework Statement
Please take a look at the picture :
Relevant Equations
torque = r F sin(r, F)
IMG_20230903_232642_013.jpg


Why it said that angle between r and F is 30?
I guess it should be 120 degrees... Am I wrong?
 
Physics news on Phys.org
As far as I can see, the length of the arm of the force respect to the center of rotation should be ##rcos30##.

63ff8d0b4fb6b3f197f8872f_moment1_perpendicular_distance.svg
 
  • Like
Likes MatinSAR and hutchphd
MatinSAR said:
Why it said that angle between r and F is 30?
It didn't say that. The angle between two vectors is obtained by putting them tail-to-tail. If you do that with r and F, you will get an angle of 120°. Then note that ##rF\sin(120^{\circ})=rF\cancel{\sin}\cos(30^{\circ}).##
 
Last edited:
kuruman said:
It didn't say that. The angle between two vectors is obtained by putting them tail-to-tail. If you do that with r and F, you will get an angle of 120°. Then note that ##rF\sin(120^{\circ})=rF\sin(30^{\circ}).##
You probably meant to write ##rF\sin(120^{\circ})=rF\cos(30^{\circ}).##
 
  • Like
Likes MatinSAR and kuruman
Steve4Physics said:
You probably meant to write ##rF\sin(120^{\circ})=rF\cos(30^{\circ}).##
Yes, of course. Good catch.
 
kuruman said:
It didn't say that. The angle between two vectors is obtained by putting them tail-to-tail. If you do that with r and F, you will get an angle of 120°. Then note that ##rF\sin(120^{\circ})=rF\cancel{\sin}\cos(30^{\circ}).##
So the book is wrong since sin30 isn't equal to sin120 degrees... @Lnewqban
@kuruman
@Steve4Physics
Thanks for your help and time.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...

Similar threads

Replies
8
Views
836
Replies
21
Views
377
Replies
12
Views
2K
Replies
6
Views
2K
Replies
13
Views
973
Replies
3
Views
638
Replies
20
Views
3K
Back
Top