# Calculate the total energy required to fly a drone on this flight plan

• Xamaa
In summary, the drone will consume 2000mAh from two 2000mAh batteries in 5 minutes of flight at an assent speed of 5 meters per second.f

#### Xamaa

How much energy will drone batteries will consume if I have the following inputs,

By using provided GPS flight path data I've calculated total horizontal distance using Haversine formula, and multiplying this distance with provided horizantal speed I've total horizontal flying time. By multiplying ascend speed with total altitude (considering starting altitude is 0) I've calculated total ascending time, and same way using the descending speed I've calculated total descending time. By adding these 3 now I've the total flight time.

Now for further calculation I've following data inputs,

Code:
{
"ascension": 0.020,
"descent": 0.010,
"translation": 0.015
},
"forcedLandingCharge": 200
}

{
"verticalSpeeds": {
"ascension": 5.0,
"descent": 1.0
},
"energy": {
"numberOfBatteries": 2,
"capacity": 2000
},
}
}
and details of these fields are as follows,

#configurations

[verticalSpeeds][ascension] the vertical speed of the drone during an ascension in meter / seconds (m/s)
[verticalSpeeds][descent] the vertical speed of the drone during a descent in meter / seconds (m/s)
[energy][numberOfBatteries] is the number of batteries mounted on the drone
[energy][capacity] is the capacity of the battery in milli Ampere Hour (mAh)
#drones

[currentLoadInFlight] in Ampere x Seconds ² / Meters ² (A.s²/m² )
The current load in A per square unit of speed ((m/s)²) on the drone power system when it is flying

In vertical ascension [ascension]
In vertical descent [descent]
In horizontal translation [translation]
NOTE: We assume that this to remain constant thorough the mission.
[forcedLandingCharge] in milli Ampere Hour (mAh)

When the available charge is the batteries is less or equal to [forcedLandingCharge], the drone will land
Now considering energy can be calculated using,

Energy = Flight Time x CurrentLoadInFlight x Speed²
How do I calculate CurrentLoadInFlight and speed parameter?

How much energy will drone batteries will consume if I have the following inputs,

By using provided GPS flight path data I've calculated total horizontal distance using Haversine formula, and multiplying this distance with provided horizantal speed I've total horizontal flying time. By multiplying ascend speed with total altitude (considering starting altitude is 0) I've calculated total ascending time, and same way using the descending speed I've calculated total descending time. By adding these 3 now I've the total flight time.

Now for further calculation I've following data inputs,

Code:
{
"ascension": 0.020,
"descent": 0.010,
"translation": 0.015
},
"forcedLandingCharge": 200
}

{
"verticalSpeeds": {
"ascension": 5.0,
"descent": 1.0
},
"energy": {
"numberOfBatteries": 2,
"capacity": 2000
},
}
}
and details of these fields are as follows,

web hosting in Sri lanka
[currentLoadInFlight] in Ampere x Seconds ² / Meters ² (A.s²/m² )
The current load in A per square unit of speed ((m/s)²) on the drone power system when it is flying

In vertical ascension [ascension]
In vertical descent [descent]
In horizontal translation [translation]
NOTE: We assume that this to remain constant thorough the mission.
[forcedLandingCharge] in milli Ampere Hour (mAh)

When the available charge is the batteries is less or equal to [forcedLandingCharge], the drone will land
Now considering energy can be calculated using,

Energy = Flight Time x CurrentLoadInFlight x Speed²
How do I calculate CurrentLoadInFlight and speed parameter?
anyone here that can response my question, any kind of help would be appreciated thanks.

I see no way to calculate CurrentLoadInFlight . If the drone hovers so that the speed=0, it still uses energy. An inefficient drone uses more power than an efficient one. I think CurrentLoadInFlight is something that must be measured by experiment, not calculated.

I also miss seeing the drone mass in your calculations. It matters whether the drone weighs a ton or an ounce.

Where is wind speed?

• Lnewqban
By multiplying ascend speed with total altitude (considering starting altitude is 0) I've calculated total ascending time, and same way using the descending speed I've calculated total descending time.
Assuming a constant assent speed, the time is not the multiplication altitude and speed. The assent time is $$t= \frac{altitude}{speed}$$

You state
Energy = Flight Time x CurrentLoadInFlight x Speed²

I realize now you actually mean battery capacity in Amp-s not energy as in Joules.

Last edited: