Calculate these 5 temperatures along this Thermodynamic cycle

Click For Summary

Homework Help Overview

The discussion revolves around calculating temperatures in a thermodynamic cycle, specifically focusing on the relationships between various states represented by temperatures T1, T2, T3, T4, Ta, and Tc. The original poster has established some equations based on the ideal gas law and other thermodynamic principles but is uncertain about certain temperature values.

Discussion Character

  • Exploratory, Assumption checking, Conceptual clarification

Approaches and Questions Raised

  • The original poster attempts to derive relationships between temperatures using equations related to the ideal gas law and proportionality concepts. Some participants question the completeness of the problem statement and the assumptions made regarding the conditions of the cycle, such as whether it involves ideal gas behavior or specific thermodynamic processes.

Discussion Status

Participants are actively engaging with the problem, raising questions about missing information and clarifying assumptions. There is a suggestion that temperatures Ta and Tc might be equal, indicating a potential direction for further exploration, but no consensus has been reached on this point.

Contextual Notes

There is a noted lack of complete problem context, including whether the cycle involves isothermal or adiabatic processes, and the original poster's assumptions about certain temperature relationships are under scrutiny.

Seeit
Messages
5
Reaction score
0
Homework Statement
Calculate the temperatures at places 2, 4, A, B and C if you know:
It's an ideal diatomic gas
T3 = 4T1
T2 = Tb = T4
The axis connecting 1, B and 3 crosses zero.
Relevant Equations
pV = nRT
Laws of thermodynamics
Screenshot_20230325_165532_WPS Office.jpg

I only know T3 = 4•T1
I was able to calculate the T2 = Tb = T4
I built four equations:
T2 = p2V1 / nR
T4 = p1V2 / nR
p1/T1 = p2/T2
V1/T2 = V2/4T1

I put them together and got T2 = 2T1

I can't figure out the temperatures of A and C. I tend to think Ta could equal Tc (then I would be able to calculate it), but I am not sure.
 
Last edited:
Physics news on Phys.org
Helo @Seeit ,
:welcome: ##\qquad## !​
Are you sure you have rendered the complete problem statement ? I would expect some more information, like: ideal gas, isothermal (or adiabatic), ...

I also miss an equation of state in your relevant equations (e.g. ##\ pV = NRT##).

Seeit said:
I only know ##T_3 = 4T_1##
How ? Or was that a given ? (In that case it is part of the problem statement)
Same for ##T_2 = T_b = T_4## ?

What about the scale and the axes of the diagram ?

##\ ##
 
  • Like
Likes   Reactions: Seeit and Lnewqban
Welcome, @Seeit !

As post #1 has been edited to answer @BvU questions, I suggest considering two things:

-The inverse proportionality between p and V.
-The similarity between polygons 1CBA and 1234 due to the axis connecting 1, B and 3, which makes their corresponding sides proportional.

direct-and-inverse-proportion-1629696427.png
 
  • Like
Likes   Reactions: Seeit and BvU
Lnewqban said:
Welcome, @Seeit !

As post #1 has been edited to answer @BvU questions, I suggest considering two things:

-The inverse proportionality between p and V.
-The similarity between polygons 1CBA and 1234 due to the axis connecting 1, B and 3, which makes their corresponding sides proportional.

View attachment 324057
So am I right about thinking that A and C are on the same isotherm and have therefore the same temperature?
 
Seeit said:
So am I right about thinking that A and C are on the same isotherm and have therefore the same temperature?
Correct!
 
  • Like
Likes   Reactions: Seeit

Similar threads

Replies
10
Views
2K
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
903
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
16
Views
4K
Replies
14
Views
2K