rdemyan
- 67
- 4
- Homework Statement
- Calculate velocities in COM reference frame for 2D collision
- Relevant Equations
- See post
I'm trying to calculate the incoming velocities in the COM reference frame for the attached diagram. Uppercase L means laboratory frame and CM means center of mass reference frame.
1) Calculate the x and y components of the center of mass velocity
$$u_{cmx} = \frac{m_1u_1cos\beta + m_2u_2cos\beta}{m_1+m_2}$$
$$u_{cmy} = \frac{m_1u_1sin\beta - m_2u_2sin\beta}{m_1+m_2}$$
2) Calculate the velocities in the center of mass frame in the x direction and y direction
$$u_{1x}^{CM} = u_1cos\beta - u_{cmx} = u_1cos\beta - \frac{m_1u_1cos\beta + m_2u_2cos\beta}{m_1+m_2}$$
or
$$u_{1x}^{CM} = \frac{m_1u_1cos\beta+m_2u_1cos\beta -m_1u_1cos\beta - m_2u_2cos\beta}{m_1+m_2} = \frac{m_2cos\beta(u_1-u_2)}{m_1+m_2}$$
and similarly,
$$u_{2x}^{CM} = u_2cos\beta - u_{cmx} = u_2cos\beta - \frac{m_1u_1cos\beta + m_2u_2cos\beta}{m_1+m_2}$$
or
$$u_{2x}^{CM} = \frac{m_1u_2cos\beta+m_2u_2cos\beta -m_1u_1cos\beta - m_2u_2cos\beta}{m_1+m_2} = \frac{m_1cos\beta(u_2-u_1)}{m_1+m_2}$$
And in the center of mass reference frame,
$$m_1u_{1x}^{CM} + m_2u_{2x}^{CM} = 0$$
or
$$\frac{m_1m_2cos\beta(u_1-u_2)}{m_1+m_2} = -\frac{m_1m_2cos\beta(u_2-u_1)}{m_1+m_2}$$
which is verified.
However, in the y-axis reference frame, I can't get the momentums to zero out. In the y-axis,
$$u_{1y}^{CM}= u_1sin\beta - u_{cmy} = u_1sin\beta - \frac{m_1u_1sin\beta - m_2u_2sin\beta}{m_1+m_2}$$
or
$$u_{1y}^{CM} = \frac{m_1u_1sin\beta+m_2u_1sin\beta -m_1u_1sin\beta + m_2u_2sin\beta}{m_1+m_2} = \frac{m_2sin\beta(u_1+u_2)}{m_1+m_2}$$
And for the particle #2,
$$u_{2y}^{CM} = u_2sin\beta - u_{cmy} = u_2sin\beta - \frac{m_1u_1sin\beta - m_2u_2sin\beta}{m_1+m_2}$$
or
$$u_{2y}^{CM} = \frac{m_1u_2sin\beta+m_2u_2sin\beta -m_1u_1sin\beta + m_2u_2sin\beta}{m_1+m_2} = \frac{m_1sin\beta(u_2-u_1) + 2m_2u_2sin\beta}{m_1+m_2}$$
For the y-axis momentum in the zero momentum reference frame,
$$m_1u_{1y}^{CM} \neq -m_2u_{2y}^{CM} $$
I'm not sure what I am doing wrong here.
1) Calculate the x and y components of the center of mass velocity
$$u_{cmx} = \frac{m_1u_1cos\beta + m_2u_2cos\beta}{m_1+m_2}$$
$$u_{cmy} = \frac{m_1u_1sin\beta - m_2u_2sin\beta}{m_1+m_2}$$
2) Calculate the velocities in the center of mass frame in the x direction and y direction
$$u_{1x}^{CM} = u_1cos\beta - u_{cmx} = u_1cos\beta - \frac{m_1u_1cos\beta + m_2u_2cos\beta}{m_1+m_2}$$
or
$$u_{1x}^{CM} = \frac{m_1u_1cos\beta+m_2u_1cos\beta -m_1u_1cos\beta - m_2u_2cos\beta}{m_1+m_2} = \frac{m_2cos\beta(u_1-u_2)}{m_1+m_2}$$
and similarly,
$$u_{2x}^{CM} = u_2cos\beta - u_{cmx} = u_2cos\beta - \frac{m_1u_1cos\beta + m_2u_2cos\beta}{m_1+m_2}$$
or
$$u_{2x}^{CM} = \frac{m_1u_2cos\beta+m_2u_2cos\beta -m_1u_1cos\beta - m_2u_2cos\beta}{m_1+m_2} = \frac{m_1cos\beta(u_2-u_1)}{m_1+m_2}$$
And in the center of mass reference frame,
$$m_1u_{1x}^{CM} + m_2u_{2x}^{CM} = 0$$
or
$$\frac{m_1m_2cos\beta(u_1-u_2)}{m_1+m_2} = -\frac{m_1m_2cos\beta(u_2-u_1)}{m_1+m_2}$$
which is verified.
However, in the y-axis reference frame, I can't get the momentums to zero out. In the y-axis,
$$u_{1y}^{CM}= u_1sin\beta - u_{cmy} = u_1sin\beta - \frac{m_1u_1sin\beta - m_2u_2sin\beta}{m_1+m_2}$$
or
$$u_{1y}^{CM} = \frac{m_1u_1sin\beta+m_2u_1sin\beta -m_1u_1sin\beta + m_2u_2sin\beta}{m_1+m_2} = \frac{m_2sin\beta(u_1+u_2)}{m_1+m_2}$$
And for the particle #2,
$$u_{2y}^{CM} = u_2sin\beta - u_{cmy} = u_2sin\beta - \frac{m_1u_1sin\beta - m_2u_2sin\beta}{m_1+m_2}$$
or
$$u_{2y}^{CM} = \frac{m_1u_2sin\beta+m_2u_2sin\beta -m_1u_1sin\beta + m_2u_2sin\beta}{m_1+m_2} = \frac{m_1sin\beta(u_2-u_1) + 2m_2u_2sin\beta}{m_1+m_2}$$
For the y-axis momentum in the zero momentum reference frame,
$$m_1u_{1y}^{CM} \neq -m_2u_{2y}^{CM} $$
I'm not sure what I am doing wrong here.
Attachments
Last edited: