Calculating Area Under a Curve Using Change of Variables and Quotient Rule

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Area Curve
Click For Summary

Homework Help Overview

The discussion revolves around calculating the area under a curve using techniques such as change of variables and the quotient rule. The problem involves integrating a function and finding areas related to a curve and its normal.

Discussion Character

  • Exploratory, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • Participants discuss the use of change of variables in integration and explore the quotient rule for finding derivatives. There are attempts to verify the correctness of the solutions presented and inquiries about alternative approaches to integration.

Discussion Status

Some participants express agreement with the solutions provided, while others question if there is a specific question being asked. There is an exploration of potential mistakes in reasoning, but no consensus is reached on any errors. The discussion remains open to further exploration of different methods.

Contextual Notes

Participants note the importance of ensuring accuracy in mathematical solutions and express curiosity about alternative integration techniques, particularly in the context of the problem presented.

chwala
Gold Member
Messages
2,828
Reaction score
425
Homework Statement
see attached question and ms
Relevant Equations
integration
Find question here;

1652617732925.png


Find solution here;

1652617775602.png


1652617817942.png


I used the same approach as ms- The key points to me were;

* making use of change of variables...

$$A_{1}=\int_0^\frac{π}{4} {\frac {4\cos 2x}{3-\sin 2x}} dx=-2\int_3^{-2} {\frac {du}{u}}= 2\int_2^3 {\frac {du}{u}}=2\ln 3-2\ln2=\ln 9 - \ln 4=\ln \frac{9}{4}$$

Now to find the other area subtended by the normal, x- axis and y- axis;
We make use of quotient rule. $$y'=\frac{(3-\sin 2x)(-8\sin 2x)-(4\cos 2x)(-2\cos 2x)}{(3-\sin 2x)^2}$$

the x-value =##\frac{π}{4}## can be substituted here directly and this is what i wanted to share. The gradient of the curve at the point where ##x=\frac{π}{4}## will be
$$y'=\frac{(3-1)(-8)-(0)(0)}{(3-1)^2}=\frac{2⋅-8}{2^2}=-4$$
Now for the given straight line equation, which is a Normal to the curve; We know that,
##y=mx +c##. It follows that,
##0=\frac{1}{4}⋅\frac{π}{4}+c##
##⇒ c=-\frac{π}{16}##
$$A_{2}=\frac {1}{2}⋅\frac{1}{4}⋅ \frac{π}{16}=\frac{π^2}{128}$$
$$A_{Required}= A_{1}+A_{2}=\ln \frac{9}{4}+ \frac{π^2}{128}$$
 
Last edited:
Physics news on Phys.org
Apologies, is there a question here? Your answer agrees with the solution - so it looks fine to me...
 
  • Like
Likes   Reactions: Delta2
Master1022 said:
Apologies, is there a question here? Your answer agrees with the solution - so it looks fine to me...
Sometimes what happens in math solutions, is that you do one mistake, followed by a second mistake and you arrive at a correct result. However I can't find any mistakes in his solution and since it agrees with the official solution, it probably is correct.
 
  • Like
Likes   Reactions: Master1022
No question rather just sharing ...as highlighted in blue...maybe I should ask if there is another approach ...particularly on the integrating part of the problem.
 
Last edited:
As easy as ##\frac{\pi}{4}## :smile:
 
  • Haha
Likes   Reactions: chwala
We could also integrate by;
Letting ##u=\sin 2x##
$$A_{1}=\int_0^\frac{π}{4} {\frac {4\cos 2x}{3-\sin 2x}} dx=2\int_0^1 {\frac {du}{3-u}}=-2\ln(3-1)+2\ln(3-0)=2\ln 3-2\ln2 ...$$
 
  • Like
Likes   Reactions: neilparker62

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 40 ·
2
Replies
40
Views
5K