Calculating Area Under a Curve Using Change of Variables and Quotient Rule

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Area Curve
Click For Summary
The discussion focuses on calculating the area under a curve using change of variables and the quotient rule. The first area, A1, is computed using integration, resulting in A1 = ln(9/4). The second area, A2, is derived from the gradient of the curve at x = π/4, leading to A2 = π^2/128. The total area required combines both results, yielding A = ln(9/4) + π^2/128. Participants express confidence in the correctness of the solutions and explore alternative integration methods.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
see attached question and ms
Relevant Equations
integration
Find question here;

1652617732925.png


Find solution here;

1652617775602.png


1652617817942.png


I used the same approach as ms- The key points to me were;

* making use of change of variables...

$$A_{1}=\int_0^\frac{π}{4} {\frac {4\cos 2x}{3-\sin 2x}} dx=-2\int_3^{-2} {\frac {du}{u}}= 2\int_2^3 {\frac {du}{u}}=2\ln 3-2\ln2=\ln 9 - \ln 4=\ln \frac{9}{4}$$

Now to find the other area subtended by the normal, x- axis and y- axis;
We make use of quotient rule. $$y'=\frac{(3-\sin 2x)(-8\sin 2x)-(4\cos 2x)(-2\cos 2x)}{(3-\sin 2x)^2}$$

the x-value =##\frac{π}{4}## can be substituted here directly and this is what i wanted to share. The gradient of the curve at the point where ##x=\frac{π}{4}## will be
$$y'=\frac{(3-1)(-8)-(0)(0)}{(3-1)^2}=\frac{2⋅-8}{2^2}=-4$$
Now for the given straight line equation, which is a Normal to the curve; We know that,
##y=mx +c##. It follows that,
##0=\frac{1}{4}⋅\frac{π}{4}+c##
##⇒ c=-\frac{π}{16}##
$$A_{2}=\frac {1}{2}⋅\frac{1}{4}⋅ \frac{π}{16}=\frac{π^2}{128}$$
$$A_{Required}= A_{1}+A_{2}=\ln \frac{9}{4}+ \frac{π^2}{128}$$
 
Last edited:
Physics news on Phys.org
Apologies, is there a question here? Your answer agrees with the solution - so it looks fine to me...
 
Master1022 said:
Apologies, is there a question here? Your answer agrees with the solution - so it looks fine to me...
Sometimes what happens in math solutions, is that you do one mistake, followed by a second mistake and you arrive at a correct result. However I can't find any mistakes in his solution and since it agrees with the official solution, it probably is correct.
 
No question rather just sharing ...as highlighted in blue...maybe I should ask if there is another approach ...particularly on the integrating part of the problem.
 
Last edited:
We could also integrate by;
Letting ##u=\sin 2x##
$$A_{1}=\int_0^\frac{π}{4} {\frac {4\cos 2x}{3-\sin 2x}} dx=2\int_0^1 {\frac {du}{3-u}}=-2\ln(3-1)+2\ln(3-0)=2\ln 3-2\ln2 ...$$
 
  • Like
Likes neilparker62
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...