Calculating Average Acceleration for Changing Velocity and Direction

Click For Summary

Discussion Overview

The discussion revolves around calculating the average acceleration of a car that changes both speed and direction. The scenario involves a car moving north at a constant speed, then turning 45 degrees east and continuing at a different speed. Participants explore the application of average acceleration in this context, including the necessary calculations and unit considerations.

Discussion Character

  • Homework-related
  • Mathematical reasoning

Main Points Raised

  • One participant presents a calculation for average acceleration, breaking down the velocity components and applying the formula for average acceleration.
  • Another participant questions the units of average acceleration, suggesting it should be in mph per hour or miles per hour squared.
  • A different participant acknowledges a mistake in their calculations regarding the initial velocity components and confirms that their method is generally correct.
  • There is a discussion about the meaningfulness of average acceleration in this scenario, with one participant expressing uncertainty about its relevance.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the interpretation of average acceleration in this context, and there are differing views on the correctness of the calculations and the significance of the units.

Contextual Notes

Some calculations involve approximations, such as using 0.7 for cosine and sine of 45 degrees, and there are unresolved aspects regarding the interpretation of the average acceleration in relation to changing direction.

ognik
Messages
626
Reaction score
2
I would just appreciate someone checking this please, I'm not sure of my answer ...

Q: Car moves North with constant speed 50 mph for 5 mins. It then turns 45 degree east and continues at 55 mph for 1 min. Find ave. acceleration.

For x, y components, Cos45 = Sin45 = 0.7, so for the 2nd part $v_x = v_y = 55 \times 0.7 = 38.9 $ mph for 1 min

So, $ a_x (ave) = \frac{\Delta v_x}{\Delta t} = \frac{38.9 - 0}{5 + 1}(60) = 389 $ and $ a_y (ave) = \frac{\Delta v_y}{\Delta t} = \frac{38.9 - 55}{5 + 1}(60) = -161 $ ?
 
Physics news on Phys.org
ognik said:
I would just appreciate someone checking this please, I'm not sure of my answer ...

Q: Car moves North with constant speed 50 mph for 5 mins. It then turns 45 degree east and continues at 55 mph for 1 min. Find ave. acceleration.

For x, y components, Cos45 = Sin45 = 0.7, so for the 2nd part $v_x = v_y = 55 \times 0.7 = 38.9 $ mph for 1 min

So, $ a_x (ave) = \frac{\Delta v_x}{\Delta t} = \frac{38.9 - 0}{5 + 1}(60) = 389 $ and $ a_y (ave) = \frac{\Delta v_y}{\Delta t} = \frac{38.9 - 55}{5 + 1}(60) = -161 $ ?

What units do you think your average acceleration has?

.
 
Hi - was not really worrying about getting the units strictly correct, just wanted to make sure I understood how to apply the average in this situation (where to me the average acceleration seems a bit meaningless)... but the units should be mph ph or $\frac{miles}{hour^2}$
 
Average acceleration is change in velocity divided by the time. Here the initial velocity is $v_0=(0,50)$ and the final velocity is $v_1=(38.89,38.89)$ in units of mph, and the time interval is $6$ minutes or $1/10$ hours.

So the average acceleration is:
$$
\overline{a}=\frac{(38.89,38.89)-(0,50)}{1/10}=10(38.89,-11.11)=(388.9,111.1) \mbox{ mph/h}
$$
 
So my method seems ok thanks (I noticed I used 55 instead of 50 for the y component).
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 16 ·
Replies
16
Views
11K
  • · Replies 2 ·
Replies
2
Views
2K