MHB Calculating Average Acceleration for Changing Velocity and Direction

ognik
Messages
626
Reaction score
2
I would just appreciate someone checking this please, I'm not sure of my answer ...

Q: Car moves North with constant speed 50 mph for 5 mins. It then turns 45 degree east and continues at 55 mph for 1 min. Find ave. acceleration.

For x, y components, Cos45 = Sin45 = 0.7, so for the 2nd part $v_x = v_y = 55 \times 0.7 = 38.9 $ mph for 1 min

So, $ a_x (ave) = \frac{\Delta v_x}{\Delta t} = \frac{38.9 - 0}{5 + 1}(60) = 389 $ and $ a_y (ave) = \frac{\Delta v_y}{\Delta t} = \frac{38.9 - 55}{5 + 1}(60) = -161 $ ?
 
Mathematics news on Phys.org
ognik said:
I would just appreciate someone checking this please, I'm not sure of my answer ...

Q: Car moves North with constant speed 50 mph for 5 mins. It then turns 45 degree east and continues at 55 mph for 1 min. Find ave. acceleration.

For x, y components, Cos45 = Sin45 = 0.7, so for the 2nd part $v_x = v_y = 55 \times 0.7 = 38.9 $ mph for 1 min

So, $ a_x (ave) = \frac{\Delta v_x}{\Delta t} = \frac{38.9 - 0}{5 + 1}(60) = 389 $ and $ a_y (ave) = \frac{\Delta v_y}{\Delta t} = \frac{38.9 - 55}{5 + 1}(60) = -161 $ ?

What units do you think your average acceleration has?

.
 
Hi - was not really worrying about getting the units strictly correct, just wanted to make sure I understood how to apply the average in this situation (where to me the average acceleration seems a bit meaningless)... but the units should be mph ph or $\frac{miles}{hour^2}$
 
Average acceleration is change in velocity divided by the time. Here the initial velocity is $v_0=(0,50)$ and the final velocity is $v_1=(38.89,38.89)$ in units of mph, and the time interval is $6$ minutes or $1/10$ hours.

So the average acceleration is:
$$
\overline{a}=\frac{(38.89,38.89)-(0,50)}{1/10}=10(38.89,-11.11)=(388.9,111.1) \mbox{ mph/h}
$$
 
So my method seems ok thanks (I noticed I used 55 instead of 50 for the y component).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top