Calculating components of a third-quadrant vector

Click For Summary
The discussion revolves around calculating components of a third-quadrant vector using trigonometric identities. Participants emphasize the importance of verifying answers and applying generic rules for sine and cosine functions, particularly for angles involving π and 2π. Key formulas discussed include sin(π + θ) and cos(π + θ), along with their implications for vector components Cy and Cx. Additional rules for sine and cosine functions, including negative angles and shifts by π/2, are also explored. The conversation concludes with a participant expressing understanding of the concepts discussed.
Joe_mama69
Messages
4
Reaction score
1
Homework Statement
I am not sure if I did this right as it wasn't as complicated as I think the solution should be and I couldn't find anything online as to how the solution is even supposed to look like. I inserted an imgur link of my answer in case the image on here isn't clear: https://imgur.com/a/tE28WWu

Calculate the components of a third quadrant vector C in the following ways:

1. use the angle between the vector and the negative x-axis (delta) and apply right-triangle trigonometry

2. use the angle between the vector and the negative y-axis (epsilon) and apply right-triangle trigonometry

3. use the standard angle for the vector (gamma) - that is, find the connection between gamma and delta in the formulas you found in part 1.

4. use the standard angle for the vector (gamma) - that is, find the connection between gamma and epsilon in the formulas you found in part 2.
Relevant Equations
x component = magnitude * cos(standard angle)
y component = magnitude * sin(standard angle)
Weekend Assignment 1-5.jpg
 
Physics news on Phys.org
1) Correct

2) Wrong. Check yr answer again!

3) What are the generic rules for below:
sin(π + θ) = ?
cos(π + θ) = ?

Apply above result to below to see relation with 1.
Cy = C sin(ϒ) = C sin(π + δ) = ?
Cx = C cos(ϒ) = C cos(π + δ) = ?

4) What are the generic rules for
sin(2π + θ) = ?
cos(2π + θ) = ?
cos(- θ) = ?
sin(- θ) = ?
cos(π/2 + θ) = ?
sin(π/2 + θ) = ?

Apply them to below to see the relation with 2.
Cy = C sin(ϒ) = C sin(3π/2 - ϵ) = C sin(2π – (π/2 + ϵ)) = ?
Cx = C cos(ϒ) = C cos(3π/2 - ϵ) = C cos(2π – (π/2 + ϵ)) = ?
 
Last edited:
Tomy World said:
1) Correct

2) Wrong. Check yr answer again!

3) What are the generic rules for below:
sin(π + θ) = ?
cos(π + θ) = ?

Apply above result to below to see relation with 1.
Cy = C sin(ϒ) = C sin(π + δ) = ?
Cx = C cos(ϒ) = C cos(π + δ) = ?

4) What are the generic rules for
sin(2π + θ) = ?
cos(2π + θ) = ?
cos(- θ) = ?
sin(- θ) = ?
cos(π/2 + θ) = ?
sin(π/2 + θ) = ?

Apply them to below to see the relation with 2.
Cy = C sin(ϒ) = C sin(3π/2 - ϵ) = C sin(2π – (π/2 + ϵ)) = ?
Cx = C cos(ϒ) = C cos(3π/2 - ϵ) = C cos(2π – (π/2 + ϵ)) = ?
Thanks I've got it now!
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 8 ·
Replies
8
Views
653
Replies
8
Views
1K
  • · Replies 21 ·
Replies
21
Views
2K
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
4
Views
1K
Replies
13
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K