Calculating Earth's Radius from Sunset and Stop Watch Measurements

  • Thread starter Thread starter Esran
  • Start date Start date
  • Tags Tags
    Radius
Click For Summary
SUMMARY

The discussion focuses on calculating the Earth's radius using sunset observations and stopwatch measurements. The key method involves understanding the geometry of a right triangle formed by the observer's height, the Earth's radius, and the angle of the Earth's rotation during the observation period. The calculation yields an approximate radius of 5.2 x 106 meters, derived from the cosine function based on the angle of 0.04625 degrees. The participants emphasize the importance of visualizing the problem and correctly applying trigonometric principles.

PREREQUISITES
  • Understanding of basic trigonometry, particularly right triangles
  • Familiarity with angular measurements and their conversions
  • Knowledge of the Taylor series expansion for small angles
  • Ability to visualize geometric relationships in physics problems
NEXT STEPS
  • Study the derivation of the Earth's radius using trigonometric functions
  • Learn about the geometric horizon and its implications in observational astronomy
  • Explore the Taylor series expansion and its applications in physics
  • Investigate the relationship between angular displacement and linear distance on a sphere
USEFUL FOR

Students of physics and mathematics, educators teaching geometry and trigonometry, and anyone interested in applying observational methods to calculate astronomical distances.

Esran
Messages
73
Reaction score
0

Homework Statement


You are lying down on a beach watching the sunset. You start a stop watch the instant the sun's top disappears below the horizon and stand up, elevating your eyes by 1.70 meters. Exactly 11.1 seconds later, you stop the watch as the sun once again disappears below the horizon. What is the Earth's radius?


Homework Equations


I think some work with triangles might be involved.


The Attempt at a Solution


Perhaps the circumference of the Earth could be calculated first. The Earth has rotated \frac{11.1 sec}{86400 sec}=0.04625 degrees. From here, I'm confused what to do next. I'm pretty sure there's an easier way to do this though.
 
Physics news on Phys.org
I did something that I'm not sure is correct. It is in error by about 20% but is on the correct order of magnitude.

Consider what your 0.04625 degrees is telling you. It is the amount of angle the Earth has rotated from event 1) sunset on Earth surface to event 2) sunset at 1.70 meters above Earth surface. So this angle represents a central angle at the Earth center. Try to draw that picture, both event 1 and event 2), and see if you can get an answer.

Have you discussed Taylor series expansion of sine and cosine? The angle here is small and I would normally use the first two terms of the Taylor series to get the answer. However, modern calculators probably will give you an answer without roundoff problems which would require this.
 
Yes, I follow you on this. However, doesn't your proposed solution require that the Earth's circumference be known?
 
No. What's the definition for the geometric horizon? Draw that line for event 1 and angle zero. Draw the horizon line for event 2 at 1.7 meters height at angle 2.
 
So we have this then?

EarthRadiusProblem.png
 
Sorry, I'm at work (slow day) and your image is being blocked from showing. I'll have to look at it at home in a few hours to see it.
 
Okay, no worries.
 
Esran said:
So we have this then?

EarthRadiusProblem.png

The two lines going to the sun should be the same line. The point 1.7 m above Event 2, Event 1 and the center of the Earth are now three vertices of a right triangle.
 
How do we know the triangle is right?
 
  • #10
I'm having trouble getting the picture you're describing, Dick. Can you scribble it out?
 
  • #11
Sorry, I'm not very good at scribbling. But there should be a single line to the sun and it should be tangent to the circle at Event 1. That's why it's a right triangle. The tangent is perpendicular to the radius at Event 1. Extend it to the radius at Event 2 and label the distance above Event 2 1.7m. Does that help??
 
  • #12
yes, I can see it now.

So, all I need is the distance to the sun, or is that even necessary?
 
  • #13
Not necessary. You have a right triangle, you know one leg is R (the Earth's radius), the hypotenuse is R+1.7m and you know the included angle. You can solve for R.
 
  • #14
Thanks!
 
  • #15
That describes what I did to solve it. If you still have trouble visualizing it, try this argument. Pretend your an ant so that your height above horizon is zero. Pretend also that the Earth isn't moving. If the sun is at the horizon, then that describes a line tangent to the Earth surface and perpendicular to the radial to the Earth center. Now move along the Earth surface by some amount of central angle (which you calculated). You should be able to convince yourself that in order to be able to see the sun again, you will have to climb a ladder to meet the same horizon line as before. So the horizon line for both angles is the same. Then just solve the triangle problem that Dick points out.
 
  • #16
I solved it. The thing that was tripping me up is that I kept drawing the little standing-guy such that he was not parallel to the radius. Solving the following equation for R gave me the solution 5.2 x 106 meters.

cos(0.04625 degrees)=\frac{R meters}{1.70 meters + R meters}
 
Last edited:
  • #17
Esran said:
I solved it. The thing that was tripping me up is that I kept drawing the little standing-guy such that he was not parallel to the radius. Solving the following equation for R gave me the solution 5.2 x 106 meters.

sin(0.04625 degrees)=\frac{R meters}{1.70 meters + R meters}

That's what I get as well. But you meant cos, not sin, right?
 
  • #18
Right, LOL.

Geez, and you'd think with a bachelors of science in mathematics, I'd be more careful about transcribing my work!

You'll probably see me around more this summer. I'm starting my masters in the fall, and I want to minor in physics (mathematics will still be my major). I minored in computer science for my undergraduate degree, but I'm not very interested in it anymore.

So I'll be working through some physics courses this summer on my own, hopefully to test out of them.
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 12 ·
Replies
12
Views
8K
  • · Replies 5 ·
Replies
5
Views
25K
  • · Replies 12 ·
Replies
12
Views
10K
Replies
19
Views
5K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
8K
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K