First, to preface this, I have never taken any formal engineering courses, and I don't remember the physics class I took very well. I'm trying to figure out how much energy it takes to accelerate a mass of 2,000,000 kg at 1G for 153,778 seconds. In other words how much energy it takes to get a spaceship to Mars in 1 day 18 hours and 43 minutes, thus maintaining artificial gravity for nearly the entire the trip, except for a brief moment halfway through in order to turn the ship around. First, I determined that distance to Mars was 57,936,384 to 402,336,000 kilometers. I remembered that gravity was 9.8 meters per second per second. I wrote a simple python program to figure out how long the trip would take, by finding out how long it would take to accelerate halfway, and then doubling that value.(adsbygoogle = window.adsbygoogle || []).push({});

That gave me a value of 153,778 seconds for the first distance, and I got a value of 405,240 seconds for the second distance. Next, I wanted to find out how much energy that trip would require, so I went to wiki and looked up the article on kinetic energy, and found that it was 1/2 the mass times the velocity squared. So, I ran that program again and got the peak velocities, which were 753,512.2 m/s for the first distance, and 1,985,676.0 m/s for the second. According to that formula, the energy required for the first distance is 1,000,000 * 753,512.2^2 joules, or about 567,780,635,548,839,870 joules. That's 567Code (Text):half_distance = 57936384000.0 / 2

current_distance = 0

current_velocity = 0

time = 0

while current_distance < half_distance:

current_velocity += gravity

current_distance += current_velocity

time += 1

print time * 2petajoules. That's more energy than released by detonating a 100 megaton nuclear bomb, and more energy than the electrical power consumed by Norway in 2005. That's just to get to the halfway point. It needs to be done again to decelerate, and two more times if the trip were to return.

I guess this is possible, but I wonder about that velocity squared part. Let's say a spaceship accelerates at 1G for, say, 10 seconds in one direction. Does it take more energy to accelerate again at 1G in the same direction than it does to accelerate at 1G in the opposite direction? If so, why? Or, if not, then am I using the correct energy calculation here?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Calculating energy needed for acceleration over time

**Physics Forums | Science Articles, Homework Help, Discussion**