Calculating Friction & Time for a Bullet Penetrating Rubber

AI Thread Summary
A 7.80 g bullet traveling at 500 m/s penetrates a block of solid rubber to a depth of 4.50 cm, prompting a calculation of the average frictional force exerted on it. To find this force, work and energy principles should be applied, assuming the frictional force remains constant. The average force can be determined using the change in momentum divided by the time taken for the bullet to stop. Additionally, the elapsed time for the bullet's penetration can be calculated under the same assumption of constant friction. Properly framing the question is crucial for accurate calculations in physics.
shin
Messages
1
Reaction score
0
Homework Statement
A 7.80 g bullet is initially moving at 500 m/s just before it penetrates a block of solid rubber to a depth of 4.50 cm.
(a)What is the magnitude of the average frictional force (in N) that is exerted on the bullet while it is moving through the block of solid rubber? Use work and energy considerations to obtain your answer.
(b)Assuming the frictional force is constant, how much time (in s) elapses between the moment the bullet enters the block of solid rubber and the moment it stops moving?
Relevant Equations
.
A 7.80 g bullet is initially moving at 500 m/s just before it penetrates a block of solid rubber to a depth of 4.50 cm.
(a)What is the magnitude of the average frictional force (in N) that is exerted on the bullet while it is moving through the block of solid rubber? Use work and energy considerations to obtain your answer.
(b)Assuming the frictional force is constant, how much time (in s) elapses between the moment the bullet enters the block of solid rubber and the moment it stops moving?
 
Physics news on Phys.org
Hello @shin ,
:welcome: !​

Here at PF things don't go as you seem to expect: dump an exercise and get the answer.
Please read the PF guidelines and post your attempt.

Oh, and: does the rubber block stay in place or can it e.g. fly off because it's hanging from a wire ?
 
shin said:
Homework Statement:: A 7.80 g bullet is initially moving at 500 m/s just before it penetrates a block of solid rubber to a depth of 4.50 cm.
(a)What is the magnitude of the average frictional force (in N) that is exerted on the bullet while it is moving through the block of solid rubber? Use work and energy considerations to obtain your answer.
(b)Assuming the frictional force is constant, how much time (in s) elapses between the moment the bullet enters the block of solid rubber and the moment it stops moving?
This is a distressingly frequent blunder by question setters who ought to know better.
Average force is ##F_{avg}=\frac{\Delta p}{\Delta t}##, the change in momentum divided by elapsed time. In vectors, ##\vec F_{avg}=\frac{\vec{\Delta p}}{\Delta t}##.
Note that this is consistent with acceleration and velocity. Cancelling mass out we get:
##a_{avg}=\frac{\Delta v}{\Delta t}##.
In general, this is not the same as ##\frac{\Delta E}{\Delta s}##, where E is energy and Δs is displacement in the direction of the force. They will be the same if the force is constant, but it cannot be written as a vector equation because energy is a scalar and you cannot divide by a vector.

Hence the correct wording of the question may be:
Assume the frictional force is constant during the penetration.
a) What is its magnitude?
b) How long does the penetration take?
 
Last edited:
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top