Calculating initial velocity in elastics collision

AI Thread Summary
The discussion focuses on calculating the initial velocity of a sports car involved in an inelastic collision with a stationary SUV. The problem involves a 980kg sports car colliding with a 2300kg SUV, which then skids together for 2.6m before stopping. Key calculations include determining the force of friction and the resulting acceleration to find the final velocity after the collision. The initial assumption of an elastic collision is incorrect, as the bumpers lock, indicating an inelastic collision where kinetic energy is not conserved. The correct approach should account for inelastic dynamics to align with the expected answer of 21 m/s.
blixel
Messages
52
Reaction score
1
NOTE: The subject should say Inelastic Collision

1. Homework Statement

A 980kg sports car collides into the rear end of a 2300kg SUV stopped at a red light. The bumpers lock, the breaks are locked, and the two cards skid forward 2.6m before stopping. The police officer, estimating the coefficient of kinetic friction between tires and road to be 0.80, calculates the speed of the sports car at impact. What was that speed?

I believe the relevant givens to be as follows:

Givens
mA=980kg
mB=2300kg
vB=0
ΔX=2.6m
μk=0.80

Homework Equations


I believe the relevant equations to be as follows:

Equations
f=μFN
K=½mv2
½mAvA2+½mBvB2=½mAv'A2+½mBv'B2

The Attempt at a Solution


Before the cars collide, the SUV isn’t moving so all the kinetic energy is in the sports car. The equation simplifies to:
mAvA2=mAv'A2+mAv'A2

I know that v'A=v'B because the cars stick to each other, so I can simplify the equation even further:
mAvA2=v'2(mA+mB)

Now to find v'2, I'm going to need force of friction.
FN=(980kg+2300kg)(9.8m/s2)=32144N
fFR=(0.80)(32144N)=25715.2N

Now I will use F=ma to find the acceleration of the two masses as they slide the 2.6m.
a=(25715.2N)/(980kg+2300kg)=7.84m/s2

Since I know the acceleration, I should now be able to calculate v' using a kinematic equation. At the moment of impact, the initial velocity would be v0=0 since the SUV is not moving.
v2-v02=2aΔX
v=sqrt(2aΔX)=sqrt[2(7.84m/s2)(2.6m)]=v'

Now I should be able to find vA using vA=sqrt([v'2(mA+mB)]/(mA))

But when I run that calculation, I get vA≈11.68 m/s. But I should be getting 21 m/s according to the book.
 
Last edited:
Physics news on Phys.org
You assumed the collision is elastic (KE is conserved). Is that an appropriate assumption for this problem?
 
Your expression for conservation of kinetic energy is only valid for an elastic collision. Not here ('bumpers lock')
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top