MHB Calculating Integrals with Antiderivatives

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Antiderivatives
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $a, b \in \mathbb{R}$ with $a<b$ and $f\in C^1([a,b])$.

I want to calculate the following integrals using the fundamental theorem of calculus, by finding in each case an antiderivative.
  1. $\int_a^b\frac{f'(x)}{f(x)}$ with $0\notin f([a,b])$
  2. $\int_a^bf'(x)f(x)dx$
  3. $\int_a^b\frac{f'(x)}{\sqrt{f(x)^2-1}}dx$ with $f([a,b])\subseteq (1, \infty)$
  4. $\int_0^{\frac{\pi}{4}}\left (\frac{2}{\cos^2(x)}+4x\right )e^{\tan (x)+x^2}dx$
For the first two I have done the following:
  1. We have that $\left (\ln (f(x))\right )'=\frac{f'(x)}{f(x)}$, so an antiderivative is $F(x)=\ln (f(x))$.

    So, we have that $$\int_a^b\frac{f'(x)}{f(x)}=F(b)-F(a)=\ln (f(b))-\ln (f(a))=\ln \left (\frac{f(b)}{f(a)}\right )$$
  2. We have that $\left (f^2(x)\right )'=2f(x)f'(x) \Rightarrow f(x)f'(x)=\frac{1}{2}\left (f^2(x)\right )'$, so an antiderivatice is $F(x)=\frac{1}{2}f^2(x)$.

    So, we have that $$\int_a^bf'(x)f(x)dx=F(b)-F(a)=\frac{1}{2}\left (f^2(b)-f^2(a)\right )$$

Is everything correct? (Wondering) For 3. if we had the integral $\int_a^b\frac{f'(x)f(x)}{\sqrt{f(x)^2-1}}dx$, an antiderivative would be $\sqrt{f^2(x)-1}$.

What could we do know where don't have the term $f(x)$ in numerator? (Wondering) Could you give me a hint for 4. ? (Wondering)
 
Physics news on Phys.org
Hey mathmari! (Smile)

mathmari said:
For 3. if we had the integral $\int_a^b\frac{f'(x)f(x)}{\sqrt{f(x)^2-1}}dx$, an antiderivative would be $\sqrt{f^2(x)-1}$.

What could we do know where don't have the term $f(x)$ in numerator?

It's all correct.
I think that the best we can do without $f(x)$ in the numerator is to try partial integration.
It still means that $f(x)$ has to be somewhere outside of the square root though. (Thinking)

mathmari said:
Could you give me a hint for 4. ?

What's the derivative for the part with the exponential function? (Wondering)
 
I like Serena said:
I think that the best we can do without $f(x)$ in the numerator is to try partial integration.
It still means that $f(x)$ has to be somewhere outside of the square root though. (Thinking)

We have the following:
$$\int_a^b\frac{f'(x)f(x)}{\sqrt{f(x)^2-1}}dx=\frac{f'(x)f(x)}{\sqrt{f(x)^2-1}}\mid_a^b-\int_a^bf(x)\left ( \frac{1}{\sqrt{f^2(x)-1}}\right )'dx=\frac{f'(x)f(x)}{\sqrt{f(x)^2-1}}\mid_a^b-\int_a^bf(x)\left ( (f^2(x)-1)^{-\frac{1}{2}}\right )'dx=\frac{f'(x)f(x)}{\sqrt{f(x)^2-1}}\mid_a^b-\int_a^bf(x)\left ( -\frac{1}{2}(f^2(x)-1)^{-\frac{3}{2}}2f(x)f'(x)\right )dx=\frac{f'(x)f(x)}{\sqrt{f(x)^2-1}}\mid_a^b+\int_a^bf(x)(f^2(x)-1)^{-\frac{3}{2}}f(x)f'(x)dx$$

Does this help us? (Wondering)
 
mathmari said:
Hey! :o

Let $a, b \in \mathbb{R}$ with $a<b$ and $f\in C^1([a,b])$.

I want to calculate the following integrals using the fundamental theorem of calculus, by finding in each case an antiderivative.
  1. $\int_a^b\frac{f'(x)}{f(x)}$ with $0\notin f([a,b])$
  2. $\int_a^bf'(x)f(x)dx$
  3. $\int_a^b\frac{f'(x)}{\sqrt{f(x)^2-1}}dx$ with $f([a,b])\subseteq (1, \infty)$
  4. $\int_0^{\frac{\pi}{4}}\left (\frac{2}{\cos^2(x)}+4x\right )e^{\tan (x)+x^2}dx$
For the first two I have done the following:
  1. We have that $\left (\ln (f(x))\right )'=\frac{f'(x)}{f(x)}$, so an antiderivative is $F(x)=\ln (f(x))$.

    So, we have that $$\int_a^b\frac{f'(x)}{f(x)}=F(b)-F(a)=\ln (f(b))-\ln (f(a))=\ln \left (\frac{f(b)}{f(a)}\right )$$
  2. We have that $\left (f^2(x)\right )'=2f(x)f'(x) \Rightarrow f(x)f'(x)=\frac{1}{2}\left (f^2(x)\right )'$, so an antiderivatice is $F(x)=\frac{1}{2}f^2(x)$.

    So, we have that $$\int_a^bf'(x)f(x)dx=F(b)-F(a)=\frac{1}{2}\left (f^2(b)-f^2(a)\right )$$

Is everything correct? (Wondering) For 3. if we had the integral $\int_a^b\frac{f'(x)f(x)}{\sqrt{f(x)^2-1}}dx$, an antiderivative would be $\sqrt{f^2(x)-1}$.

What could we do know where don't have the term $f(x)$ in numerator? (Wondering) Could you give me a hint for 4. ? (Wondering)

3.

$\displaystyle \begin{align*} \int_a^b{ \frac{f'(x)}{\sqrt{\left[ f(x) \right] ^2 - 1}}\,\mathrm{d}x } \end{align*}$

Let $\displaystyle \begin{align*} f(x) = \cosh{(t)} \implies f'(x)\,\mathrm{d}x = \sinh{(t)}\,\mathrm{d}t \end{align*}$, nothing that when $\displaystyle \begin{align*} x = a, \, t = \textrm{arcosh}\,\left[ f(a) \right] \end{align*}$ and when $\displaystyle \begin{align*} x = b, \, t = \textrm{arcosh}\,\left[ f(b) \right] \end{align*}$ to find

$\displaystyle \begin{align*} \int_a^b{ \frac{f'(x)}{\sqrt{ \left[ f(x) \right] ^2 - 1 }}\,\mathrm{d}x } &= \int_{\textrm{arcosh}\,\left[ f(a) \right]}^{\textrm{arcosh}\,\left[ f(b) \right] }{ \frac{\sinh{(t)}}{\sqrt{\cosh^2{(t)} - 1}} \,\mathrm{d}t } \\ &= \int_{\textrm{arcosh}\,\left[ f(a) \right]}^{\textrm{arcosh}\,\left[ f(b) \right]}{ \frac{\sinh{(t)}}{\sinh{(t)}}\,\mathrm{d}t } \\ &= \int_{\textrm{arcosh}\,\left[ f(a) \right] }^{\textrm{arcosh}\,\left[ f(b)\right] }{ 1\,\mathrm{d}t } \\ &= \left[ t \right] _{\textrm{arcosh}\,\left[ f(a) \right] }^{\textrm{arcosh}\,\left[ f(b) \right] } \\ &= \textrm{arcosh}\,\left[ f(b) \right] - \textrm{arcosh}\,\left[ f(a) \right] \end{align*}$4.

$\displaystyle \begin{align*} \int_0^{\frac{\pi}{4}}{ \left[ \frac{2}{\cos^2{(x)}} + 4\,x \right] \,\mathrm{e}^{ \tan{(x)} + x^2 }\,\mathrm{d}x } &= 2\int_0^{\frac{\pi}{4}}{ \left[ \frac{1}{\cos^2{(x)}} + 2\,x \right] \,\mathrm{e}^{\tan{(x)} + x^2} \,\mathrm{d}x } \end{align*}$

Let $\displaystyle \begin{align*} u = \tan{(x)} + x^2 \implies \mathrm{d}u = \left[ \frac{1}{\cos^2{(x)}} + 2\,x \right] \,\mathrm{d}x \end{align*}$ and note that when $\displaystyle \begin{align*} x = 0 , \, u = 0 \end{align*}$ and when $\displaystyle \begin{align*} x = \frac{\pi}{4} , \, u = 1 + \frac{\pi ^2}{16} \end{align*}$ to find

$\displaystyle \begin{align*} 2 \int_0^{ \frac{\pi}{4} }{ \left[ \frac{1}{\cos^2{(x)}} + 2\,x \right] \,\mathrm{e}^{\tan{(x)} + x^2} \,\mathrm{d}x } &= 2 \int_0^{ 1 + \frac{\pi ^2}{16} }{ \mathrm{e}^{u}\,\mathrm{d}u } \\ &= 2 \, \left[ \mathrm{e}^u \right]_0^{ 1 + \frac{\pi ^2}{16} } \\ &= 2\,\left[ \mathrm{e}^{ 1 + \frac{\pi^2}{16} } - \mathrm{e}^0 \right] \\ &= 2 \,\left[ \mathrm{e}^{ 1 + \frac{\pi ^2}{16} } - 1 \right] \end{align*}$
 
Ahh I see! (Nerd)

Now where we use the substitution, can we say which the antiderivative in each case is? (Wondering)
 
mathmari said:
Ahh I see! (Nerd)

Now where we use the substitution, can we say which the antiderivative in each case is? (Wondering)

Yes of course you can, but it is ALWAYS more concise to change the bounds when you do the substitution to avoid having to do this.

In 3. for example we ended up with t + C, and as we made the substitution $\displaystyle \begin{align*} f(x) = \cosh{(t)} \end{align*}$ that means $\displaystyle \begin{align*} t = \textrm{arcosh}\,\left[ f(x) \right] \end{align*}$ and thus the antiderivative is $\displaystyle \begin{align*} \textrm{arcosh}\,\left[ f(x) \right] + C \end{align*}$.
 
mathmari said:
We have the following:
$$\int_a^b\frac{f'(x)f(x)}{\sqrt{f(x)^2-1}}dx=\frac{f'(x)f(x)}{\sqrt{f(x)^2-1}}\mid_a^b-\int_a^bf(x)\left ( \frac{1}{\sqrt{f^2(x)-1}}\right )'dx=\frac{f'(x)f(x)}{\sqrt{f(x)^2-1}}\mid_a^b-\int_a^bf(x)\left ( (f^2(x)-1)^{-\frac{1}{2}}\right )'dx=\frac{f'(x)f(x)}{\sqrt{f(x)^2-1}}\mid_a^b-\int_a^bf(x)\left ( -\frac{1}{2}(f^2(x)-1)^{-\frac{3}{2}}2f(x)f'(x)\right )dx=\frac{f'(x)f(x)}{\sqrt{f(x)^2-1}}\mid_a^b+\int_a^bf(x)(f^2(x)-1)^{-\frac{3}{2}}f(x)f'(x)dx$$

Does this help us? (Wondering)

Not to solve this particular integral, but if we had to solve the integral that you've just found, we could use partial integration to bring it back to the original integral.

To actually solve the integral, we can do a substitution, which is effectively what you did:
$$\int_a^b\frac{f'(x)f(x)}{\sqrt{f(x)^2-1}}dx
= \int_a^b\frac{f(x)}{\sqrt{f(x)^2-1}}df(x)
=\int_{f(a)}^{f(b)}\frac{u}{\sqrt{u^2-1}}du
$$
 
Back
Top