MHB Calculating LCD and GCD of 2 Sets of Numbers

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Gcd Lcd
Click For Summary
The discussion focuses on calculating the greatest common divisor (GCD) and least common multiple (LCM) of two sets of numbers expressed in their prime factorizations. For the GCD, the common prime factors are identified, leading to the conclusion that the GCD is \(2 \cdot 3^2 \cdot 7\). For the LCM, the process involves finding the highest powers of all prime factors present in both sets, resulting in \(2^3 \cdot 3^3 \cdot 5 \cdot 7 \cdot 11\). Participants clarify that the calculations do not require multiplying out the numbers, as the prime factorization approach is sufficient. The discussion emphasizes understanding the relationships between GCD and LCM through prime factorization.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Determine
$\textit{gcd}(2^4 \cdot 3^2 \cdot 5 \cdot 7^2,\quad 2 \cdot 3^3 \cdot 7 \cdot 11)$
and
$\textit{lcm}(2^3 \cdot 3^2 \cdot 5,\quad 2 \cdot 3^3 \cdot 7 \cdot 11)$

ok the example appeared to have combine the 2 sets on gcd but I am still ?

there is no book answer for this:confused:
 
Last edited:
Physics news on Phys.org
Greatest Common divisor ... think about how you would factor out the common terms from both prime decompositions if they were added

$(2^4 \cdot 3^2 \cdot 5 \cdot 7^2) + (2 \cdot 3^3 \cdot 7 \cdot 11)$

${\color{red}(2 \cdot 3^2 \cdot 7)} \bigg[(2^3 \cdot 5 \cdot 7)+ ( 3 \cdot 11) \bigg]$Least Common Multiple ... think about obtaining a common denominator if both prime factor decompositions were denominators of two fractions

$\dfrac{x}{2^3 \cdot 3^2 \cdot 5} + \dfrac{y}{2 \cdot 3^3 \cdot 7 \cdot 11}$

$\dfrac{x(3 \cdot 7 \cdot 11) + y(2^2 \cdot 5)}{\color{red} 2^3 \cdot 3^3 \cdot 5 \cdot 7 \cdot 11}$
 
well that makes a lot more sense

i don't think there is any need to multiple these out:cool:
 
Last edited:
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 26 ·
Replies
26
Views
882
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K