Calculating Limits without L'Hopital: A Scientist's Perspective

  • Thread starter Thread starter xisco
  • Start date Start date
  • Tags Tags
    l'hopital Limit
xisco
Messages
4
Reaction score
0
Misplaced Homework Thread
How can I calculate
1666083022385.png

preferably without L'Hopital? Thanks.
 

Attachments

  • 1666082881662.png
    1666082881662.png
    879 bytes · Views: 137
Physics news on Phys.org
Hello @xisco ,
:welcome: ##\qquad ## !​

Well, what do you have in your toolbox to tackle this one ?

(PF guidelines require you post an attempt at solution before we are allowed to assist)

##\ ##
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top