Calculating Muon Decay Rate using Delta Function Identity

Click For Summary
SUMMARY

The forum discussion focuses on calculating the muon decay rate using the delta function identity. The user attempts to derive the expression for the decay rate, represented as $$d\Gamma=\frac{mG^2|\vec{k_3}|^2}{8\pi^4}(m-2|\vec{k_3}|)\frac{sin(\theta)d|\vec{k_3}|d\theta d^3 k_4}{(|\vec{k_3}|^2+|\vec{k_4}|^2+2|\vec{k_3}||\vec{k_4}|cos(\theta))|\vec{k_4}|}\delta(m-|\vec{k_3}+\vec{k_4}|-|\vec{k_3}|-|\vec{k_4}|)$$. The user encounters discrepancies in their results compared to an online solution, particularly in the delta function expressions. They seek clarification on whether a delta function identity can reconcile the differences in their derived expressions.

PREREQUISITES
  • Understanding of muon decay processes in particle physics
  • Familiarity with delta function identities in quantum mechanics
  • Knowledge of Lorentz invariant phase space (LIPS) integration
  • Proficiency in manipulating mathematical expressions involving trigonometric functions
NEXT STEPS
  • Study the properties of delta functions and their applications in particle physics
  • Learn about Lorentz invariant phase space and its role in decay rate calculations
  • Review the derivation of decay rates in particle physics, focusing on muon decay
  • Explore advanced mathematical techniques for variable substitutions in integrals
USEFUL FOR

Students and researchers in particle physics, particularly those focusing on decay processes and mathematical techniques in quantum mechanics.

kelly0303
Messages
573
Reaction score
33

Homework Statement


I need to calculate the muon decay rate, ignoring the mass of the outgoing particles.

Homework Equations


##d\Gamma = \frac{1}{2E_1}|M|^2d\Pi_{LIPS}##

The Attempt at a Solution


I am actually having problem with the math at a point. I reached this $$d\Gamma=\frac{mG^2|\vec{k_3}|^2}{8\pi^4}(m-2|\vec{k_3}|)\frac{sin(\theta)d|\vec{k_3}|d\theta d^3 k_4}{(|\vec{k_3}|^2+|\vec{k_4}|^2+2|\vec{k_3}||\vec{k_4}|cos(\theta))|\vec{k_4}|}\delta(m-|\vec{k_3}+\vec{k_4}|-|\vec{k_3}|-|\vec{k_4}|)$$ And I didn't know what to do. I looked online and I found something switching variables $$u^2 = |\vec{k_3}|^2+|\vec{k_4}|^2+2|\vec{k_3}||\vec{k_4}|cos(\theta)$$ $$2udu=-2|\vec{k_3}||\vec{k_4}|sin(\theta)d\theta$$ And upon replacement they get $$d\Gamma=\frac{mG^2|\vec{k_3}|}{8\pi^4}(m-2|\vec{k_3}|) \frac{dud|\vec{k_3}|d^3 k_4}{|\vec{k_4}|^2}\delta(m-u^2-|\vec{k_3}|-|\vec{k_4}|)$$ However I get something different: $$d\Gamma=\frac{mG^2|\vec{k_3}|}{8\pi^4}(m-2|\vec{k_3}|) \frac{dud|\vec{k_3}|d^3 k_4}{-u|\vec{k_4}|^2}\delta(m-u-|\vec{k_3}|-|\vec{k_4}|)$$ The step before this one, me and the solution I found have the same expression. I followed through the solution I found and in the end they reach the answer I need, so what they do is right but I am not sure what I am doing wrong. Basically they are getting $$\delta(m-u^2-|\vec{k_3}|-|\vec{k_4}|)$$ and I am getting $$\frac{1}{-u}\delta(m-u-|\vec{k_3}|-|\vec{k_4}|)$$ Is there a delta function identity to make the 2 expression equal? Or am I doing something wrong? Thank you!
 
Physics news on Phys.org
kelly0303 said:

Homework Statement


I need to calculate the muon decay rate, ignoring the mass of the outgoing particles.

Homework Equations


##d\Gamma = \frac{1}{2E_1}|M|^2d\Pi_{LIPS}##

The Attempt at a Solution


I am actually having problem with the math at a point. I reached this $$d\Gamma=\frac{mG^2|\vec{k_3}|^2}{8\pi^4}(m-2|\vec{k_3}|)\frac{sin(\theta)d|\vec{k_3}|d\theta d^3 k_4}{(|\vec{k_3}|^2+|\vec{k_4}|^2+2|\vec{k_3}||\vec{k_4}|cos(\theta))|\vec{k_4}|}\delta(m-|\vec{k_3}+\vec{k_4}|-|\vec{k_3}|-|\vec{k_4}|)$$ And I didn't know what to do. I looked online and I found something switching variables $$u^2 = |\vec{k_3}|^2+|\vec{k_4}|^2+2|\vec{k_3}||\vec{k_4}|cos(\theta)$$ $$2udu=-2|\vec{k_3}||\vec{k_4}|sin(\theta)d\theta$$ And upon replacement they get $$d\Gamma=\frac{mG^2|\vec{k_3}|}{8\pi^4}(m-2|\vec{k_3}|) \frac{dud|\vec{k_3}|d^3 k_4}{|\vec{k_4}|^2}\delta(m-u^2-|\vec{k_3}|-|\vec{k_4}|)$$
This last expression cannot be right, since the dimensions in the delta function do not match (##u^2## has the dimensions of an energy squared). So there is something wrong with that. Can you show the rest of your steps, or at least the final expression?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
7
Views
2K