MHB Calculating Scale on a School Map

  • Thread starter Thread starter Baylee1014
  • Start date Start date
  • Tags Tags
    Map Scale School
AI Thread Summary
To calculate the scale on a school map where 3 inches represents 9 feet, the problem can be set up as a proportion. Specifically, the equation is x inches to 1.5 feet as 3 inches to 9 feet. Solving this gives x = 0.5 inches, but it’s important to note that x must be smaller than 3 inches since 1.5 feet is less than 9 feet. Thus, the correct representation of 1 foot 6 inches on the map is 1.5 inches. Understanding these proportions is crucial for accurate mapping.
Baylee1014
Messages
2
Reaction score
0
Not sure if this is the right category but i need help.

On a map of a school, 3 inches represents 9 feet. How many inches would represent 1 foot 6 inches?
 
Mathematics news on Phys.org
Hello Baylee1014,

Yes, you have chosen the correct sub-forum in which to post your question. (Yes)

It is best though to show what you've tried or what your thoughts are on how to begin so our helpers know exactly where you're stuck or need help.

The problem is essentially stating:

$x$ inches is to 1.5 ft as 3 inches is to 9 ft.

Can you translate that into an equation which you can then solve for $x$?
 
MarkFL said:
Hello Baylee1014,

Yes, you have chosen the correct sub-forum in which to post your question. (Yes)

It is best though to show what you've tried or what your thoughts are on how to begin so our helpers know exactly where you're stuck or need help.

The problem is essentially stating:

$x$ inches is to 1.5 ft as 3 inches is to 9 ft.

Can you translate that into an equation which you can then solve for $x$?

x is equal to .5 so would it would 18 inches??
 
Yes, good work...you are right that $$x=\frac{1}{2}$$, but $x$ is in inches, not in feet.

You should know too that $x$ must be smaller than 3 inches because 1.5 is less than 9.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
8
Views
2K
Replies
2
Views
2K
Replies
2
Views
20K
Replies
3
Views
2K
Replies
8
Views
258
Back
Top