Calculating specific heat capacity from entropy

approx12
Messages
11
Reaction score
6
Homework Statement
Given the entropy S of system, calculate the specific heat capacity C_V and C_p
Relevant Equations
$$C_P=T \left(\frac{\partial S}{\partial T}\right)_{N,P}$$ and
$$C_V=T \left(\frac{\partial S}{\partial T}\right)_{N,V}$$
Hey guys! I'm currently struggling with a specific thermodynamics problem.
I'm given the entropy of a system (where ##A## is a constant with fitting physical units): $$S(U,V,N)=A(UVN)^{1/3}$$I'm asked to calculate the specific heat capacity at constant pressure ##C_p## and at constant volume ##C_V##.
I know that the two are given by the following equation:
$$C_P=T \left(\frac{\partial S}{\partial T}\right)_{N,P}$$$$C_V=T \left(\frac{\partial S}{\partial T}\right)_{N,V}$$I've tried to eleminate ##U## from the equation by calculating: $$\left(\frac{\partial S}{\partial V}\right)=\frac{P}{T}=\frac{1}{3}(NU)^{1/3}V^{-2/3}$$ Solving for ##U## and plugging it back into the original equation gives me: $$S(P,V,T)=\frac{PV}{T}$$
I don't know if my steps were correct so far but what I'm now struggling with is calculating ##\left(\frac{\partial S}{\partial T}\right)_{P}## and ##\left(\frac{\partial S}{\partial T}\right)_{V}##. For me they would be both equal to $$\left(\frac{\partial S}{\partial T}\right)=-\frac{PV}{T^2}$$ But I don't think that is correct because the relationship $$C_P-C_V=\frac{TV\alpha_P^2}{\kappa_T}$$ needs to bet true.

It would be awesome if anyone could help me out with this one and point me in the right direction. Thank you!
 
Physics news on Phys.org
Looks like you dropped a factor of 3 in getting to the equation ##S = \frac{PV}{T}##.

I don't know if my steps were correct so far but what I'm now struggling with is calculating ##\left(\frac{\partial S}{\partial T}\right)_{P}## and ##\left(\frac{\partial S}{\partial T}\right)_{V}##. For me they would be both equal to $$\left(\frac{\partial S}{\partial T}\right)=-\frac{PV}{T^2}$$

When calculating ##\left(\frac{\partial S}{\partial T}\right)_{P}## you can't treat ##V## as a constant. Likewise when calculating ##\left(\frac{\partial S}{\partial T}\right)_{V}## you can't treat ##P## as a constant.

One way to proceed is to find the equation of state that relates the 3 variables ##P##, ##V##, and ##T##. You can then use this to write ##S## as a function of just ##T## and ##P## which then makes it straightforward to evaluate ##\left(\frac{\partial S}{\partial T}\right)_{P}##. Or, you can write ##S## as a function of just ##T## and ##V## so that you can evaluate ##\left(\frac{\partial S}{\partial T}\right)_{V}##. I don't know if this is the best way, but it's one way.
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top