Calculating the flux of a vector field

AI Thread Summary
The discussion revolves around calculating the flux of a vector field using a specific integral. The initial confusion stems from the limits of integration and the interpretation of the area being integrated, with participants recognizing that the area is circular rather than square. Clarifications were made regarding the azimuthal integration process and how to set the correct limits for the integral. Ultimately, the original poster successfully resolved their confusion and solved the problem after receiving guidance on the integration limits. The conversation highlights the importance of understanding geometric interpretations in calculus.
Slimy0233
Messages
167
Reaction score
48
Homework Statement
Q.18. The flux of the vector field ##\vec{F}=(x+y) \hat{i}+(x-3 y) \hat{j}+x y \hat{k}## through the surface defined by the equation ##x^{2}+y^{2} \leq a^{2}, x>0, y>0##, will be
(a) ##a^{4} / 8##
(b) ##a^{4} / 4##
(c) ##a^{2} / 8##
(d) ##a^{2} / 4##
Relevant Equations
##\vec{F}=(x+y) \hat{i}+(x-3 y) \hat{j}+x y \hat{k}##
I am not sure why latex is not rendering, but here is the question.
1697874194177.png
1697872890966.png


The answer is ##\frac{a^2}{8}## and for the love of my life, I don't know how. Can you please help me with this?
 
Last edited:
Physics news on Phys.org
\int_S xy dS= \int_0^a r^2 rdr \int_0^\frac{\pi}{2} \sin\theta \cos \theta d\theta
Azimuthal integration gives 1/2.
 
anuttarasammyak said:
\int_S xy dS= \int_0^a r^2 rdr \int_0^\frac{\pi}{2} \sin\theta \cos \theta d\theta
Azimuthal integration gives 1/2.
I am DOUBT! azimuthal integration is a new phrase for me. I think it's the equivalent of what I learnt as integration using spherical co-ordinates, but still, I don't see how you can get 1/2 there. Also, isn't dr 0? We are integrating with radius r as constant (a). We are given a surface x^2 + y^2 \leq a^2
 
I think$$\int_{x=0}^a \int_{y=0}^a xy ~dx~dy$$should actually be$$\int_{x=0}^a \int_{y=0}^{\sqrt {a^2-x^2}} xy~ dy~dx$$
And on 'dimensional' grounds, I think the answer should be a multiple of ##a^4## rather than ##a^2##. So the 'official answer' might be wrong.
 
Steve4Physics said:
I think$$\int_{x=0}^a \int_{y=0}^a xy ~dx~dy$$should actually be$$\int_{x=0}^a \int_{y=0}^{\sqrt {a^2-x^2}} xy~ dy~dx$$
And on 'dimensional' grounds, I think the answer should be a multiple of ##a^4## rather than ##a^2##. So the 'official answer' might be wrong.
can you please explain the limits of the integral more? I mean, I put a as the limit of the integral as it's a part of a circle we are talking about here, why are you putting a different limit?

edit: Damn! Yes! It's a circle we are talking about, I seem to have calculated the area of a square. Yes?
 
Slimy0233 said:
edit: Damn! Yes! It's a circle we are talking about, I seem to have calculated the area of a square. Yes?
Yes!
 
Slimy0233 said:
can you please explain the limits of the integral more? I mean, I put a as the limit of the integral as it's a part of a circle we are talking about here, why are you putting a different limit?
Draw ##xy## axes and the 1st quadrant.

Draw a thin vertical ‘elementary’ strip of thickness ##dx## for some value of ##x## inside the quadrant. Note:
- the left side of the strip has x-coordinate ##x##;
- the right side of the strip has x-coordinate ##x+dx##;
- the bottom edge of the strip is a has y-coordinate = 0;
- the top edge of the strip has y-coordinate ##\sqrt {a^2-x^2}## (that’s the key point).

When you integrate ##xy## over the elementary strip you get ##\int_{y=0}^{y=\sqrt {a^2-x^2}} xy~ dy~dx##. (Then it remains to integrate the contributions from all the strips.)

Can you take t from there?
 
Steve4Physics said:
Can you take t from there?
It was very kind of you to explain that well and that much!

I can take it from there, thank you! I managed to solve it.
DocScanner_116909489552867.jpg
DocScanner_116966761071806.jpg
 
  • Like
Likes Steve4Physics
Back
Top