MHB Calculating the Inverse Matrix for a 3x3 Matrix

Click For Summary
The discussion focuses on calculating the inverse of a 3x3 matrix using row reduction to reach the reduced row echelon form (RREF). The matrix provided is A, and the calculated inverse A^{-1} is presented. Users express preferences for different matrix calculators, with one participant favoring Wolfram Alpha (W|A) over Desmos for ease of use. There is a consensus that manual calculations for larger matrices can lead to errors and are generally cumbersome. The conversation highlights the challenges of matrix arithmetic and the utility of computational tools in simplifying the process.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{311.2.2.31}$
$A=\left[\begin{array}{rrrrr}
1&0&-2\\-3&1&4\\2&-3&4
\end{array}\right]$
RREF with augmented matrix
$\left[ \begin{array}{ccc|ccc}
1&0&-2&1&0&0 \\&&&\\-3&1&4&0&1&0 \\&&&\\ 2&-3&4&0&0&1\end{array}\right]
\sim
\left[ \begin{array}{ccc|ccc}1&0&0&8&3&1 \\&&&\\0&1&0&10&4&1 \\&&&\\ 0&0&1&\dfrac{7}{2}&\dfrac{3}{2}&\dfrac{1}{2}
\end{array}\right]
\quad \therefore A^{-1}=\left[
\begin{array}{ccc}8 & 3 & 1 \\\\ 10 & 4 & 1 \\\\ \dfrac{7}{2} & \dfrac{3}{2} & \dfrac{1}{2} \end{array} \right]$

ok I left out the row reduction steps
but I tried to use the desmos matrix calculator to check this
but after you put in the matrix didn't see how to run it.
 
Physics news on Phys.org
This is why I prefer W|A.

-Dan
 
when all else fails there is W|A
 
Do you really have to use some kind of calculator do the arithmetic for you?

Surely it is not that hard to do
$\begin{bmatrix}1 & 0 & -2 \\ -3 & 1 & 4 \\2 & 3 & 4 \end{bmatrix}\begin{bmatrix}8 & 3 & 1 \\ 10 & 4 6 & 1 \\ \frac{7}{2} & \frac{3}{2} & \frac{1}{2}\end{bmatrix}= \begin{bmatrix}8- 7 & 3- 3 & 1- 1\\ -24+ 10+ 14 & -9+ 4+ 6 & -3+ 1+ 2 \\ 16- 30+ 14 & 6- 12+ 6 & 2- 3+ 2 \end{bmatrix}= \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
and
$\begin{bmatrix}8 & 3 & 1 \\ 10 & 4 6 & 1 \\ \frac{7}{2} & \frac{3}{2} & \frac{1}{2}\end{bmatrix}$$\begin{bmatrix}8 & 3 & 1 \\ 10 & 4 6 & 1 \\ \frac{7}{2} & \frac{3}{2} & \frac{1}{2}\end{bmatrix}$$= \begin{bmatrix}8- 9+ 2 & 3- 3 & -16+ 12+ 4 \\ 10- 12+ 2 & 4- 3 & -20+ 16+ 4 \\ \frac{7}{2}- \frac{9}{2}+ 1 & \frac{3}{2}- \frac{3}{2} & -7+ 6+ 2 \end{bmatrix}=$$ \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

(I'm just too old!)
 
Any operation with matrices larger than 2 by 2 isn't meant to be done by hand, especially if one is prone to arithmetic errors. ;)
 
its kinda like a bingo game
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K