MHB Calculating the Inverse Matrix for a 3x3 Matrix

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{311.2.2.31}$
$A=\left[\begin{array}{rrrrr}
1&0&-2\\-3&1&4\\2&-3&4
\end{array}\right]$
RREF with augmented matrix
$\left[ \begin{array}{ccc|ccc}
1&0&-2&1&0&0 \\&&&\\-3&1&4&0&1&0 \\&&&\\ 2&-3&4&0&0&1\end{array}\right]
\sim
\left[ \begin{array}{ccc|ccc}1&0&0&8&3&1 \\&&&\\0&1&0&10&4&1 \\&&&\\ 0&0&1&\dfrac{7}{2}&\dfrac{3}{2}&\dfrac{1}{2}
\end{array}\right]
\quad \therefore A^{-1}=\left[
\begin{array}{ccc}8 & 3 & 1 \\\\ 10 & 4 & 1 \\\\ \dfrac{7}{2} & \dfrac{3}{2} & \dfrac{1}{2} \end{array} \right]$

ok I left out the row reduction steps
but I tried to use the desmos matrix calculator to check this
but after you put in the matrix didn't see how to run it.
 
Physics news on Phys.org
This is why I prefer W|A.

-Dan
 
when all else fails there is W|A
 
Do you really have to use some kind of calculator do the arithmetic for you?

Surely it is not that hard to do
$\begin{bmatrix}1 & 0 & -2 \\ -3 & 1 & 4 \\2 & 3 & 4 \end{bmatrix}\begin{bmatrix}8 & 3 & 1 \\ 10 & 4 6 & 1 \\ \frac{7}{2} & \frac{3}{2} & \frac{1}{2}\end{bmatrix}= \begin{bmatrix}8- 7 & 3- 3 & 1- 1\\ -24+ 10+ 14 & -9+ 4+ 6 & -3+ 1+ 2 \\ 16- 30+ 14 & 6- 12+ 6 & 2- 3+ 2 \end{bmatrix}= \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
and
$\begin{bmatrix}8 & 3 & 1 \\ 10 & 4 6 & 1 \\ \frac{7}{2} & \frac{3}{2} & \frac{1}{2}\end{bmatrix}$$\begin{bmatrix}8 & 3 & 1 \\ 10 & 4 6 & 1 \\ \frac{7}{2} & \frac{3}{2} & \frac{1}{2}\end{bmatrix}$$= \begin{bmatrix}8- 9+ 2 & 3- 3 & -16+ 12+ 4 \\ 10- 12+ 2 & 4- 3 & -20+ 16+ 4 \\ \frac{7}{2}- \frac{9}{2}+ 1 & \frac{3}{2}- \frac{3}{2} & -7+ 6+ 2 \end{bmatrix}=$$ \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

(I'm just too old!)
 
Any operation with matrices larger than 2 by 2 isn't meant to be done by hand, especially if one is prone to arithmetic errors. ;)
 
its kinda like a bingo game
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...

Similar threads

Replies
2
Views
966
Replies
4
Views
2K
Replies
7
Views
1K
Replies
1
Views
1K
Replies
3
Views
2K
Replies
2
Views
3K
Back
Top