MHB Calculating the Inverse Matrix for a 3x3 Matrix

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{311.2.2.31}$
$A=\left[\begin{array}{rrrrr}
1&0&-2\\-3&1&4\\2&-3&4
\end{array}\right]$
RREF with augmented matrix
$\left[ \begin{array}{ccc|ccc}
1&0&-2&1&0&0 \\&&&\\-3&1&4&0&1&0 \\&&&\\ 2&-3&4&0&0&1\end{array}\right]
\sim
\left[ \begin{array}{ccc|ccc}1&0&0&8&3&1 \\&&&\\0&1&0&10&4&1 \\&&&\\ 0&0&1&\dfrac{7}{2}&\dfrac{3}{2}&\dfrac{1}{2}
\end{array}\right]
\quad \therefore A^{-1}=\left[
\begin{array}{ccc}8 & 3 & 1 \\\\ 10 & 4 & 1 \\\\ \dfrac{7}{2} & \dfrac{3}{2} & \dfrac{1}{2} \end{array} \right]$

ok I left out the row reduction steps
but I tried to use the desmos matrix calculator to check this
but after you put in the matrix didn't see how to run it.
 
Physics news on Phys.org
This is why I prefer W|A.

-Dan
 
when all else fails there is W|A
 
Do you really have to use some kind of calculator do the arithmetic for you?

Surely it is not that hard to do
$\begin{bmatrix}1 & 0 & -2 \\ -3 & 1 & 4 \\2 & 3 & 4 \end{bmatrix}\begin{bmatrix}8 & 3 & 1 \\ 10 & 4 6 & 1 \\ \frac{7}{2} & \frac{3}{2} & \frac{1}{2}\end{bmatrix}= \begin{bmatrix}8- 7 & 3- 3 & 1- 1\\ -24+ 10+ 14 & -9+ 4+ 6 & -3+ 1+ 2 \\ 16- 30+ 14 & 6- 12+ 6 & 2- 3+ 2 \end{bmatrix}= \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
and
$\begin{bmatrix}8 & 3 & 1 \\ 10 & 4 6 & 1 \\ \frac{7}{2} & \frac{3}{2} & \frac{1}{2}\end{bmatrix}$$\begin{bmatrix}8 & 3 & 1 \\ 10 & 4 6 & 1 \\ \frac{7}{2} & \frac{3}{2} & \frac{1}{2}\end{bmatrix}$$= \begin{bmatrix}8- 9+ 2 & 3- 3 & -16+ 12+ 4 \\ 10- 12+ 2 & 4- 3 & -20+ 16+ 4 \\ \frac{7}{2}- \frac{9}{2}+ 1 & \frac{3}{2}- \frac{3}{2} & -7+ 6+ 2 \end{bmatrix}=$$ \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

(I'm just too old!)
 
Any operation with matrices larger than 2 by 2 isn't meant to be done by hand, especially if one is prone to arithmetic errors. ;)
 
its kinda like a bingo game
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K