MHB Calculating the Limit of $\displaystyle \frac{5^{\sin{h}}-1}{\tan{h}}$

  • Thread starter Thread starter Guest2
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
The limit of the expression $\displaystyle \lim_{h \to 0} \frac{5^{\sin{h}}-1}{\tan{h}}$ can be effectively calculated using L'Hôpital's Rule. By substituting $t = \tan{h}$ and applying the limit, the expression simplifies to $\lim_{t \to 0} \frac{5^{\frac{t}{\sqrt{t^2+1}}}-1}{t}$. The derivative of the function at $x=0$ leads to the conclusion that the limit evaluates to $\log(5)$. Thus, the limit is confirmed to be $\log(5)$.
Guest2
Messages
192
Reaction score
0
With this one I don't know where to start

$\displaystyle \lim_{h \to 0} \frac{5^{\sin{h}}-1}{\tan{h}}$
 
Physics news on Phys.org
Guest said:
With this one I don't know where to start

$\displaystyle \lim_{h \to 0} \frac{5^{\sin{h}}-1}{\tan{h}}$

I would use L'Hôpital's Rule...:)
 
MarkFL said:
I would use L'Hôpital's Rule...:)
Is this correct?

$ \ell :=\displaystyle \lim_{h \to 0} \frac{5^{\sin{h}}-1}{\tan{h}} $ let $t = \tan{h}$ then $ \sin(h) = \sin(\arctan{t}) = \frac{t}{\sqrt{t^2+1}}$.

$$\begin{aligned} \displaystyle \ell & = \lim_{t \to 0} \frac{5^{\dfrac{t}{\sqrt{t^2+1}}}-1}{t} \\& =\lim_{t \to 0} \frac{5^{\dfrac{t+x}{\sqrt{(t+x)^2+1}}}-5^{\dfrac{x}{\sqrt{x^2+1}}}}{t}\bigg|_{x=0} \\& = \frac{d}{dx} 5^{\dfrac{x}{\sqrt{x^2+1}}}\bigg|_{x=0} \\& = \frac{5^{\dfrac{x}{\sqrt{x^2+1}}}\log(5)}{\sqrt{(x^2+1)^3}}\bigg|_{x=0} \\& = \log(5). \end{aligned}$$
 
Never mind, L'hopital is indeed the best way to do this.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
14
Views
3K
Replies
11
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 53 ·
2
Replies
53
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K