- #1
mirandasatterley
- 62
- 0
My Question is " A spherical aluminum ball of mass 1.26kg contains an empty spherical cavity that is concentric with the ball. The ball just barely floats in water. Calculate (a) the outer radius of the ball and (b) the radius of the cavity."
I'm notsure if it's right, but so far I have:
the buoyancy force = the gravitational force.
B = (density(fluid))(g)(V(object))
Fg = m(object)g = (density(object))(V(object))(g)
Setting them equal,
d(fluid)gV(object) = d(object)V(object)g
I was then thinking that V(object) = 4/3(pi)(r^3), sothat i can solve for the radius of the object.
I'm unsure of how to solve for the radius because the V of water is unknown, and I don't know any other equations that i can use to solve it. I'm also unsure of how to incorperate the radius of the cavity in part b. Would it just be r(found in part a)-r(cavity)
I'm notsure if it's right, but so far I have:
the buoyancy force = the gravitational force.
B = (density(fluid))(g)(V(object))
Fg = m(object)g = (density(object))(V(object))(g)
Setting them equal,
d(fluid)gV(object) = d(object)V(object)g
I was then thinking that V(object) = 4/3(pi)(r^3), sothat i can solve for the radius of the object.
I'm unsure of how to solve for the radius because the V of water is unknown, and I don't know any other equations that i can use to solve it. I'm also unsure of how to incorperate the radius of the cavity in part b. Would it just be r(found in part a)-r(cavity)