mathdad
- 1,280
- 0
Let cbrt = cube rootcbrt{3} x cbrt{3} =
(3)^(1/3) * (3)^(1/3)
3^(1/6) ir sixth root {3}
Correct?
(3)^(1/3) * (3)^(1/3)
3^(1/6) ir sixth root {3}
Correct?
MarkFL said:In general, you want to use the following rule:
$$\sqrt[3]{a}\cdot\sqrt[3]{b}=\sqrt[3]{ab}$$
Using exponents, we can get the same result:
$$a^c\cdot b^c=(ab)^c$$
Now, when the base is the same, we can simply add exponents:
$$a^b\cdot a^c=a^{b+c}$$
So, in the given expression, we may write:
$$\sqrt[3]{3}\cdot\sqrt[3]{3}=\sqrt[3]{3\cdot3}=\sqrt[3]{3^2}=3^{\frac{2}{3}}=3^{\frac{1}{3}+\frac{1}{3}}=3^{\frac{1}{3}}\cdot3^{\frac{1}{3}}=\sqrt[3]{3}\cdot\sqrt[3]{3}$$
RTCNTC said:Great but is my answer wrong?
MarkFL said:Yes, your result is incorrect. :D
You want to add the two exponents to get 1/3 + 1/3 = 2/3.