MHB Calculating Travel Time for Light in an Optical Fiber

  • Thread starter Thread starter chrisliu1234
  • Start date Start date
  • Tags Tags
    Interference
AI Thread Summary
Light traveling through an optical fiber experiences different travel times based on its path, leading to pulse spreading and potential information loss. The fiber consists of a central core with a higher index of refraction (n1 = 1.58) surrounded by a sheath (n2 = 1.53). The discussion focuses on calculating the time difference between light traveling directly along the fiber's axis and light reflecting at the critical angle within the core. The formula for direct travel time is t = n1 * L / c, while the time for the zigzag path involves a more complex calculation. Ultimately, the change in travel time is expressed as the difference between the two calculated times.
chrisliu1234
Messages
2
Reaction score
0
Figure 35-57 shows an optical
fiber in which a central plastic
core of index of refraction n1 
1.58 is surrounded by a plastic
sheath of index of refraction n2 
1.53. Light can travel along different
paths within the central
core, leading to different travel times through the fiber.This causes an
initially short pulse of light to spread as it travels along the fiber,
resulting in information loss. Consider light that travels directly along
the central axis of the fiber and light that is repeatedly reflected at the
critical angle along the core–sheath interface, reflecting from side to
side as it travels down the central core. If the fiber length is 300 m,
what is the difference in the travel times along these two routes?

I know that I need to use t=L/v1=n1*L/c which becomes t=L/v1*cos(theta)=n1*L/(c*sqrt(1-(sin(theta)/n1)^2), but now I am stuck trying to figure the time for the question.
 
Mathematics news on Phys.org
chrisliu1234 said:
Figure 35-57 shows an optical
fiber in which a central plastic
core of index of refraction n1 
1.58 is surrounded by a plastic
sheath of index of refraction n2 
1.53. Light can travel along different
paths within the central
core, leading to different travel times through the fiber.This causes an
initially short pulse of light to spread as it travels along the fiber,
resulting in information loss. Consider light that travels directly along
the central axis of the fiber and light that is repeatedly reflected at the
critical angle along the core–sheath interface, reflecting from side to
side as it travels down the central core. If the fiber length is 300 m,
what is the difference in the travel times along these two routes?

I know that I need to use t=L/v1=n1*L/c which becomes t=L/v1*cos(theta)=n1*L/(c*sqrt(1-(sin(theta)/n1)^2), but now I am stuck trying to figure the time for the question.

Hi chrisliu1234! Welcome to MHB! (Smile)

Let's start with $t=\frac{n_1 L}{c}$ for the time to travel along the central axis.
Did you find the corresponding time?

As for the light traveling at critical angles, you're supposed to deduce a formula without theta.
Is that perhaps where your problem is? (Wondering)
 
I like Serena said:
Hi chrisliu1234! Welcome to MHB! (Smile)

Let's start with $t=\frac{n_1 L}{c}$ for the time to travel along the central axis.
Did you find the corresponding time?

As for the light traveling at critical angles, you're supposed to deduce a formula without theta.
Is that perhaps where your problem is? (Wondering)

So does change in time = t zigzag - t direct = n1^2*L/n2*c - n1*L/c?
 
chrisliu1234 said:
So does change in time = t zigzag - t direct = n1^2*L/n2*c - n1*L/c?

That looks right yes. (Nod)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top