- #1
Mayan Fung
- 131
- 14
In optical communications, one of the modulation methods is to control the optical power (Simplest case, for example, bright = bit 1, dim = bit 0). I learned that we can achieve this by a Mach-Zehnder modulator (MZ modulator).
Simply speaking, the principle of MZ modulator is to split the input light into two, traveling in two waveguides. By applying a voltage across one of the two arms, we can alter the refractive index of it and thus inducing a phase difference between the two split lights. Then, when they are combined as one output light signal, if they constructively interfere, then the output power is maximum (bit 1). Otherwise, if they destructively interfere, then the output power is minimum (bit 0).
It sounds good till here. Yet, I am puzzled about energy conservation. Let's say we split the input light into two with the same amplitude. When they combined with destructive interference, there is no light. How come we have optical power input but no power output?
Simply speaking, the principle of MZ modulator is to split the input light into two, traveling in two waveguides. By applying a voltage across one of the two arms, we can alter the refractive index of it and thus inducing a phase difference between the two split lights. Then, when they are combined as one output light signal, if they constructively interfere, then the output power is maximum (bit 1). Otherwise, if they destructively interfere, then the output power is minimum (bit 0).
It sounds good till here. Yet, I am puzzled about energy conservation. Let's say we split the input light into two with the same amplitude. When they combined with destructive interference, there is no light. How come we have optical power input but no power output?