Graduate Calculation of S-matrix elements in quantum field theory

Click For Summary
The discussion centers on the calculation of S-matrix elements in quantum field theory, emphasizing the perturbative approach where the S-matrix is expressed as S = 1 + iT, with T representing the transfer matrix. The momentum-conserving delta function is crucial for ensuring that the initial and final states have the same total four-momentum, allowing for the simplification of the S-matrix calculations. The integration over the transfer matrix leads to the emergence of delta functions, which enforce momentum conservation during interactions. The example provided illustrates a photon pair creation process, demonstrating how to derive the matrix elements using field operator expansions and the relevant commutation relations. Ultimately, the discussion highlights the importance of these mathematical constructs in understanding particle interactions in quantum field theory.
spaghetti3451
Messages
1,311
Reaction score
31
Consider the following extract taken from page 60 of Matthew Schwartz's 'Introduction to Quantum Field Theory':We usually calculate ##S##-matrix elements perturbatively. In a free theory, where there are no interactions, the ##S##-matrix is simply the identity matrix ##\mathbb{1}##. We can therefore write ##S=\mathbb{1}+i\mathcal{T}##, where ##\mathcal{T}## is called the transfer matrix and describes deviations from the free theory. Since the ##S##-matrix should vanish unless the initial and final states have the same total ##4##-momentum, it is helpful to factor an overall momentum-conserving ##\delta##-function: ##\mathcal{T}=(2\pi)^{4}\delta^{4}(\sum p)\mathcal{M}##. Here, ##\delta^{4}(\sum p)## is shorthand for ##\delta^{4}(\sum p^{\mu}_{i} - \sum p^{\mu}_{f})##, where ##p^{\mu}_{i}## are the initial particles' momenta and ##p^{\mu}_{f}## are the final particles' momenta. In this way, we can focus on computing the non-trivial part of the ##S##-matrix, ##\mathcal{M}##. In quantum field theory, "matrix elements" usually means ##\langle f|\mathcal{M}|i\rangle##. Thus we have

$$\langle f|S-\mathbb{1}|i\rangle = i(2\pi)^{4}\delta^{4}(\sum p)\langle f|\mathcal{M}|i\rangle.$$

Now, it might seem worrisome at first that we need to take the square of a quantity with a ##\delta##-function. However, this is actually simple to deal with. When integrated over, one of the delta functions in the square is sufficient to enforce the desired condition; the remaining ##\delta##-function will always be non-zero and formally infinite, but with our finite time and volume will give ##\delta^{4}(0)=\frac{TV}{(2\pi)^{4}}##. For ##|f\rangle \neq |i\rangle## (the case ##|f\rangle = |i\rangle##, for which nothing happens, is special),

$$|\langle f|S|i\rangle |^{2}=\delta^{4}(0)\delta^{4}(\sum p)(2\pi)^{8}|\langle f|\mathcal{M}|i\rangle|^{2} = \delta^{4}(\sum p)TV(2\pi)^{4}|\mathcal{M}|^{2},$$

where ##| \mathcal{M} |^{2} \equiv | \langle f | \mathcal{M} | i \rangle |^{2}.##
Why can we factor out the momentum-conserving delta function? Are we integrating the transfer matrix ##\mathcal{T}## over the some integration variable so that the delta function helps to conserve the ##4##-momentum?
 
Physics news on Phys.org
Energy-momentum conserving delta function results from the space-time integration in the S-matrix expansion S = \sum_{n=0}^{\infty} S^{(n)} = \sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} \int d^{4}x_{1} \cdots d^{4}x_{n} \ T \big \{ \mathcal{H}_{I}(x_{1}) \cdots \mathcal{H}_{I}(x_{n}) \big \} . For QED
\mathcal{H}_{I}(x) = -e N \big \{ \bar{\psi}(x) \gamma^{\mu}\psi (x) A_{\mu}(x) \big \} .
Expanding the field operators in terms of positive and negative frequency modes, and doing the normal ordering, we obtain
<br /> \begin{equation*}<br /> \begin{split}<br /> \mathcal{H}(x) =&amp; -e \left[ \bar{\psi}^{+}\gamma^{\mu}\psi^{+} + \bar{\psi}^{-}\gamma^{\mu}\psi^{-} + \bar{\psi}^{-}\gamma^{\mu}\psi^{+} - \psi^{-}_{b}\gamma^{\mu}_{ab}\bar{\psi}^{+}_{a} \right] A^{+}_{\mu} \\<br /> &amp; - e \left[ \bar{\psi}^{+}\gamma^{\mu}\psi^{+} + \bar{\psi}^{-}\gamma^{\mu}\psi^{-} + \bar{\psi}^{-}\gamma^{\mu}\psi^{+} - \psi^{-}_{b}\gamma^{\mu}_{ab}\bar{\psi}^{+}_{a} \right] A^{-}_{\mu} .<br /> \end{split}<br /> \end{equation*}<br />
The first line contains the four elementary processes of photon-absorption, whereas the terms in the second line represent \gamma-emission. These are not real physical processes because they don’t conserve both energy and momentum for physical photons k^{2} = 0, and fermions p^{2} = m^{2}. Nevertheless, we can use them to see where the delta function comes from. Let us consider the pair creation process \gamma (\mathbf{k} , l ) \to e^{-}(\mathbf{p_{1}} , s) e^{+}(\mathbf{p_{2}}, r) . So, we have | i \rangle = | \gamma ; \mathbf{k} , l \rangle = a^{\dagger}_{l}(\mathbf{k}) | 0 \rangle , | f \rangle = | e^{-}; \mathbf{p_{1}}, s \rangle | e^{+}; \mathbf{p_{2}} , r \rangle = c^{\dagger}_{s}(\mathbf{p_{1}}) d^{\dagger}_{r}(\mathbf{p_{2}}) | 0 \rangle .
Thus, the matrix element for this first-order process is given by
\langle f | S^{(1)} | i \rangle = i e \int d^{4}x \ \langle 0 | c_{s}(\mathbf{p}_{1}) d_{r}(\mathbf{p}_{2}) \bar{\psi}^{-}(x) \gamma^{\mu} \psi^{-}(x) A^{+}_{\mu}(x) a^{\dagger}_{l}(\mathbf{k}) | 0 \rangle .
Now, I leave you to do the rest. Just substitute the following expansions, and use the anti-commutation relations for the fermionic operators, c , c^{\dagger} , d and d^{\dagger}, and the commutation relations for the bosonic operators, a^{\dagger} and a, to get rid of all operators and the vacuum state
\bar{ \psi }^{-}(x) = \sum_{\bar{\mathbf{p}}_{1} , \bar{s}} \left( \frac{m}{V E( \bar{\mathbf{p}}_{1} )} \right)^{1/2} c^{\dagger}_{\bar{s}}(\bar{\mathbf{p}}_{1}) \ \bar{u}_{\bar{s}}(\bar{\mathbf{p}}_{1}) \ e^{i \bar{p}_{1}x } ,
\psi^{-}(x) = \sum_{\bar{\mathbf{p}}_{2} , \bar{r}} \left( \frac{m}{V E(\bar{\mathbf{p}}_{2})} \right)^{1/2} d^{\dagger}_{\bar{r}}(\bar{\mathbf{p}}_{2}) \ v_{\bar{r}}(\bar{\mathbf{p}}_{2}) \ e^{i \bar{p}_{2}x } .
A^{+}_{\mu}(x) = \sum_{\bar{\mathbf{k}} , \bar{l}} \left( \frac{1}{2V \omega (\bar{\mathbf{k}})} \right)^{1/2} \epsilon_{\mu}(\bar{\mathbf{k}};\bar{l}) \ a_{\bar{l}} (\bar{\mathbf{k}}) \ e^{- i \bar{k}x} .
Then, do the x-integration to obtain the delta function. The final result should look like
\langle f | S^{(1)} | i \rangle = \left( \frac{m}{V E(\mathbf{p}_{1})} \right)^{1/2} \left( \frac{m}{V E(\mathbf{p}_{2})} \right)^{1/2} \left( \frac{1}{2V \omega (\mathbf{k})} \right)^{1/2} \ (4\pi)^{4} \delta^{4}( p_{1} + p_{2} - k ) \ \mathcal{M} , where
\mathcal{M} = i e \ \bar{u} (\mathbf{p}_{1}; s) \gamma^{\mu} \epsilon_{\mu} (\mathbf{k}; l ) v (\mathbf{p}_{2}; r ) .
 
Last edited:
  • Like
Likes jeeves
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
980
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K