MHB Calculus 2 (Power Series) when the limit is zero by root test

Click For Summary
The root test for power series requires starting with the absolute value of x, and if the limit equals zero, it indicates absolute convergence for all x values. Multiplying the absolute value by zero is valid since the limit confirms convergence. When the limit is zero, it is appropriate to conclude that the radius of convergence is infinite, meaning the interval of convergence is (-∞, +∞). The series converges absolutely, which implies convergence for negative values of x as well. This understanding is crucial for solving power series problems effectively.
yeny
Messages
7
Reaction score
0
Hi guys!

Here's a problem i was working on. I solved it by root test and got absolute value of x on the outside of the limit and the limit equaled zero. Is it wrong to multiply the outside absolute value by the zero I got from the limit? or is that okay?

In general, when we are solving power series problems, is it okay to think of R equals infinity when the limit is zero? is that always the case? the interval of convergence is (-inf, +inf)

what are the steps that YOU would take to solve such a problem?

hope this makes sense. THANK YOU !

View attachment 8520
View attachment 8519
 

Attachments

  • Screen Shot 2018-10-24 at 9.49.16 PM.png
    Screen Shot 2018-10-24 at 9.49.16 PM.png
    4.1 KB · Views: 107
  • root test.png
    root test.png
    19.8 KB · Views: 149
Physics news on Phys.org
yeny said:
Hi guys!

Here's a problem i was working on. I solved it by root test and got absolute value of x on the outside of the limit and the limit equaled zero. Is it wrong to multiply the outside absolute value by the zero I got from the limit? or is that okay?

In general, when we are solving power series problems, is it okay to think of R equals infinity when the limit is zero? is that always the case? the interval of convergence is (-inf, +inf)

what are the steps that YOU would take to solve such a problem?

hope this makes sense. THANK YOU !
The root test only works for series of positive terms. So you should start by taking the absolute value of $|x|$. When you find that the series converges you can then use the fact that absolute convergence implies convergence to deduce the result for negative $x$.

Apart from that, your answer is correct. The limit of the $k$th root is zero, so you can conclude that the series converges (absolutely) for all $x$. That is expressed informally by saying that the radius of convergence is infinite.