I Callan-Symanzik equation for Effective Potential

thatboi
Messages
130
Reaction score
20
Hey all,
I am looking equations (13.24),(13.25) in Peskin & Schroeder's QFT book and I am confused about how they change from the Callan-Symanzik equation for the Effective Action to the Effective Potential. I thought the relation for constant ##\phi_{cl}## was ##\Gamma[\phi_{cl}] = -(VT)\cdot V_{eff}(\phi_{cl})##, equation (11.50) in the book. But making such a substitution into (13.24), I do not understand how to get to (13.25).
Any advice would be appreciated, thanks.
 
Physics news on Phys.org
First imagine that the space is discretized, so that you can write
$$\int dx\, \phi(x)\frac{\delta}{\delta\phi(x)}\Gamma[\phi]=
\sum_{x=1,2,\cdots} \phi_x \frac{\partial}{\partial\phi_x} \Gamma(\phi_1,\phi_2,\ldots)$$
Then define the quantity
$$V(\phi)=\Gamma(\phi,\phi,\ldots)$$
Clearly
$$\frac{\partial V}{\partial\phi}=\sum_{x}\left(\frac{\partial \Gamma}{\partial\phi_x} \right)_{\phi_1=\phi_2=\cdots=\phi}$$
so
$$\phi\frac{\partial V}{\partial\phi}=
\sum_{x}\phi\left(\frac{\partial \Gamma}{\partial\phi_x} \right)_{\phi_1=\phi_2=\cdots=\phi} =
\left( \sum_{x} \phi_x\frac{\partial \Gamma}{\partial\phi_x} \right)_{\phi_1=\phi_2=\cdots=\phi}$$
Finally turn back to the continuous ##x##, so that the last formula can be written as
$$\left( \int dx\, \phi(x)\frac{\delta}{\delta\phi(x)}\Gamma[\phi]\right)_{\phi(x) =\phi, \; \forall x}
=\phi\frac{\partial V}{\partial\phi}$$
Now getting (13.25) should be obvious.
 
  • Love
  • Like
Likes vanhees71 and malawi_glenn
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top