I Callan-Symanzik equation for Effective Potential

thatboi
Messages
130
Reaction score
20
Hey all,
I am looking equations (13.24),(13.25) in Peskin & Schroeder's QFT book and I am confused about how they change from the Callan-Symanzik equation for the Effective Action to the Effective Potential. I thought the relation for constant ##\phi_{cl}## was ##\Gamma[\phi_{cl}] = -(VT)\cdot V_{eff}(\phi_{cl})##, equation (11.50) in the book. But making such a substitution into (13.24), I do not understand how to get to (13.25).
Any advice would be appreciated, thanks.
 
Physics news on Phys.org
First imagine that the space is discretized, so that you can write
$$\int dx\, \phi(x)\frac{\delta}{\delta\phi(x)}\Gamma[\phi]=
\sum_{x=1,2,\cdots} \phi_x \frac{\partial}{\partial\phi_x} \Gamma(\phi_1,\phi_2,\ldots)$$
Then define the quantity
$$V(\phi)=\Gamma(\phi,\phi,\ldots)$$
Clearly
$$\frac{\partial V}{\partial\phi}=\sum_{x}\left(\frac{\partial \Gamma}{\partial\phi_x} \right)_{\phi_1=\phi_2=\cdots=\phi}$$
so
$$\phi\frac{\partial V}{\partial\phi}=
\sum_{x}\phi\left(\frac{\partial \Gamma}{\partial\phi_x} \right)_{\phi_1=\phi_2=\cdots=\phi} =
\left( \sum_{x} \phi_x\frac{\partial \Gamma}{\partial\phi_x} \right)_{\phi_1=\phi_2=\cdots=\phi}$$
Finally turn back to the continuous ##x##, so that the last formula can be written as
$$\left( \int dx\, \phi(x)\frac{\delta}{\delta\phi(x)}\Gamma[\phi]\right)_{\phi(x) =\phi, \; \forall x}
=\phi\frac{\partial V}{\partial\phi}$$
Now getting (13.25) should be obvious.
 
  • Love
  • Like
Likes vanhees71 and malawi_glenn
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top