mar01
- 1
- 0
given a=b
a²=ab
subtract b² on both sides
a²-b²=ab-b²
(a+b)(a-b)=b(a-b)
a+b=b
a+a=a
2a=a
2=1
simple
mar01 said:given a=b
a²=ab
subtract b² on both sides
a²-b²=ab-b²
(a+b)(a-b)=b(a-b)
a+b=b
a+a=a
2a=a
2=1
simple
Not true.Sobeita said:Okay, how about this one?
1^1 = 1; // Exponential identity.
1^2 = 1; // A power of 1 equals 1.
1^1 = 1^2. // Substitution of like terms.
1 = 2. // Exponents are equal if the bases are equal.
:)
jnorman said:i remember my father showing me a proof once that 1=2, but can't quite recall it. but, if you start with the equation:
x^2 -1 = 0, you can factor x^2 - 1 into (x+1)(x-1)=0
then divide both sides by x-1, and get x+1=0.
for a value of x=1, you have shown that 2=0.
:-)
Mark44 said:Not true.
Assuming a > p, if ax = ay, then ex lna = ey lna
This implies that x = y OR that a = 1.
If a = 1 as in your "proof" then x and y can be unequal.
Sobeita said:Okay, how about this one?
1^1 = 1; // Exponential identity.
1^2 = 1; // A power of 1 equals 1.
1^1 = 1^2. // Substitution of like terms.
1 = 2. // Exponents are equal if the bases are equal.
:)
LumenPlacidum said:I really like this one. It hides the division by zero very well.
navneet1990 said:is this possible
1 = 2
??
When the Peano axioms were first proposed, Bertrand Russell and others agreed that these axioms implicitly defined what we mean by a "natural number". Henri Poincaré was more cautious, saying they only defined natural numbers if they were consistent; if there is a proof that starts from just these axioms and derives a contradiction such as 0 = 1, then the axioms are inconsistent, and don't define anything. In 1900, David Hilbert posed the problem of proving their consistency using only finitistic methods as the second of his twenty-three problems.[12] In 1931, Kurt Gödel proved his second incompleteness theorem, which shows that such a consistency proof cannot be formalized within Peano arithmetic itself.[13]