- #1
poseidon007
- 2
- 0
Homework Statement
A cannonball is launched with initial velocity of magnitude v0 over a horizontal surface. At what minimum angle θmin above the horizontal should the cannonball be launched so that it rises to a height H which is larger than the horizontal distance R that it will travel when it returns to the ground?
(A) θmin = 76◦
(B) θmin = 72◦
(C) θmin = 60◦
(D) θmin = 45◦
(E) There is no such angle, as R > H for all range problems.
Homework Equations
d = (vi+vf)/2)*t
The Attempt at a Solution
H = (1/2)(v0sinθ)(t) and R = (v0cosθ)(t)
Thus, if H = R, then (1/2)(v0sinθ)(t) = (v0cosθ)(t)
=>tanθ = 2, so θ = 63.4°. I'm probably making a really obvious mistake here, but I'm not seeing it. Any help would be appreciated.