MHB Can a Matrix be Written as a Linear Combination of Another Matrix's Columns?

brunette15
Messages
58
Reaction score
0
So i have the following:
[a b; c d] = [e f ; g h] * [p q ; r s]

I have to show that the if the original matrices are written as A = EP then the columns of A are linear combinations of E.

I was able to prove [a;c] = p[e;g] + r[f;h] and the same for [b;d] but i don't know where to go from here :/

Any help would really be appreciated!
Thanks in advance!
 
Physics news on Phys.org
brunette15 said:
So i have the following:
[a b; c d] = [e f ; g h] * [p q ; r s]

I have to show that the if the original matrices are written as A = EP then the columns of A are linear combinations of E.

I was able to prove [a;c] = p[e;g] + r[f;h] and the same for [b;d] but i don't know where to go from here :/

Any help would really be appreciated!
Thanks in advance!

Hi again! (Wave)

Let's write out the right hand side:
$$\begin{pmatrix}e&f \\ g&h\end{pmatrix}
\begin{pmatrix}p&q \\ r&s\end{pmatrix}
=\begin{pmatrix}ep+fr&eq+fs \\ gp+hr&gq+hs\end{pmatrix}
$$
Taking a look at the first column, we can write it as:
$$p\begin{pmatrix}e \\ g\end{pmatrix} + r\begin{pmatrix}f \\ h\end{pmatrix}
$$
This is a linear combination of the columns of E! (Happy)
 
I like Serena said:
Hi again! (Wave)

Let's write out the right hand side:
$$\begin{pmatrix}e&f \\ g&h\end{pmatrix}
\begin{pmatrix}p&q \\ r&s\end{pmatrix}
=\begin{pmatrix}ep+fr&eq+fs \\ gp+hr&gq+hs\end{pmatrix}
$$
Taking a look at the first column, we can write it as:
$$p\begin{pmatrix}e \\ g\end{pmatrix} + r\begin{pmatrix}f \\ h\end{pmatrix}
$$
This is a linear combination of the columns of E! (Happy)

Thankyou so much!
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
4
Views
2K