MHB Can a Matrix be Written as a Linear Combination of Another Matrix's Columns?

brunette15
Messages
58
Reaction score
0
So i have the following:
[a b; c d] = [e f ; g h] * [p q ; r s]

I have to show that the if the original matrices are written as A = EP then the columns of A are linear combinations of E.

I was able to prove [a;c] = p[e;g] + r[f;h] and the same for [b;d] but i don't know where to go from here :/

Any help would really be appreciated!
Thanks in advance!
 
Physics news on Phys.org
brunette15 said:
So i have the following:
[a b; c d] = [e f ; g h] * [p q ; r s]

I have to show that the if the original matrices are written as A = EP then the columns of A are linear combinations of E.

I was able to prove [a;c] = p[e;g] + r[f;h] and the same for [b;d] but i don't know where to go from here :/

Any help would really be appreciated!
Thanks in advance!

Hi again! (Wave)

Let's write out the right hand side:
$$\begin{pmatrix}e&f \\ g&h\end{pmatrix}
\begin{pmatrix}p&q \\ r&s\end{pmatrix}
=\begin{pmatrix}ep+fr&eq+fs \\ gp+hr&gq+hs\end{pmatrix}
$$
Taking a look at the first column, we can write it as:
$$p\begin{pmatrix}e \\ g\end{pmatrix} + r\begin{pmatrix}f \\ h\end{pmatrix}
$$
This is a linear combination of the columns of E! (Happy)
 
I like Serena said:
Hi again! (Wave)

Let's write out the right hand side:
$$\begin{pmatrix}e&f \\ g&h\end{pmatrix}
\begin{pmatrix}p&q \\ r&s\end{pmatrix}
=\begin{pmatrix}ep+fr&eq+fs \\ gp+hr&gq+hs\end{pmatrix}
$$
Taking a look at the first column, we can write it as:
$$p\begin{pmatrix}e \\ g\end{pmatrix} + r\begin{pmatrix}f \\ h\end{pmatrix}
$$
This is a linear combination of the columns of E! (Happy)

Thankyou so much!
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top